Simple method of copper analysis using monosodium glutamate and its application in ore analysis

Open access


A simple photometric method for copper (II) analysis using monosodium glutamate (MSG) is presented. The method is technically simple, inexpensive, quantitative, and makes use of readily available reagents. The rapid reaction of copper (II) with glutamate in aqueous solution at pH 10 to form a blue complex serves as a basis for the determination of copper (II) in the range of 10-500 μg/ml. Copper recovery is > 82%. The method could be used to determine copper (II) concentrations in iron ore samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Al-Sibaai A. A. & Fogg A. G. (1973). Stability of dilute standard solutions of antimony arsenic iron and rhenium used in colorimetry. Analyst98 732-738 DOI: 10.1039/AN9739800732.

  • Bastug A. S. Goz S. E. Talman Y. Gokturk S. Asil E. & Caliskan E. (2011). Formation constants and coordination thermodynamics for binary complexes of Cu(II) and some α-amino acids in aqueous solution. Journal of Coordination Chemistry64(2) 281-292. DOI: 10.1080/00958972.2010.541454.

  • Butler E. J. & Forbes D. H. S. (1965). A comparison of three absorptiometric methods for the determination of copper in biological materials. Analytica Chimica Acta33 59-66. DOI: 10.1016/S0003-2670(01)84854-6.

  • Castro B. Lima J. L. F. C. & Reis S. (1995). Potentiometric determination of formation constants of copper(II)/bile acid/peptide in aqueous solute. Journal of Pharmaceutical and Biomedical Analysis 13(4/5) 465-470.

  • Ghasemi J. Ahmadi Sh. & Torkestani K. (2003). Simultaneous determination of copper nickel cobalt and zinc using zincon as a metallochromic indicator with partial least squares. Analytica Chimica Acta487(2) 181-188. DOI: 10.1016/S0003-2670(03)00556-7.

  • Hamada Y. Z. Holyfield H. Rosli K. & Burkey T. (2009). Equilibrium models of Cr3+ and Cu2+ with glutamate. Journal of Coordination Chemistry62(5) 721-733. DOI: 10.1080/00958970802353660.

  • Hoste J. Eeckhout J. & Gillis J. (1953). Spectrophotometric determination of copper with cuproine. AnalyticaChimica Acta 9 263-274.

  • Irving H. M. & Tomlinson W. R. (1968). Effect of chromium(III) and of other ions on the absorptiometric determination of copper with 2 2'-biquinolyl. Talanta 15(11) 1267-1279. DOI: org/10.1016/0039-9140(68)80049-9.

  • Jacobsen E. Langmyhr F. J. & Selmer-Olsen A. R. (1961). On the use of bis-cyclohexanone-oxalyldihydrazone and bis-acetaldehyde-oxalyldihydrazone in the analysis of copper. Analytica Chimica Acta24 579-588. DOI: 10.1016/0003-2670(61)80120-7.

  • Kállay C. Várnagy K. Micera G. Sanna D. & Sóvágó I. (2005). Copper (II) complexes of oligopeptides containing aspartyl and glutamyl residues. Potentiometric and spectroscopic studies. Journal of Inorganic Biochemistry99(7) 1514-1525. DOI: 10.1016/j.jinorgbio.2005.04.009.

  • Kumar B. Singh H. B. Katyal M. & Sharma R. L. (1991). Spectrophotometric and derivative spectrophotometric determination of copper (II) with dithizone in aqueous phase. Microchimica Acta105(1-3) 79-87.

  • Larsen E. R. (1974). Spectrophotometric determination of copper in fertilizer with neocuproine. AnalyticalChemistry46(8) 1131-1132. DOI: 10.1021/ac60344a047.

  • Laznicka P. (2006). Giant metallic deposit: Future Sources of Industrial Metals. Berlin: Springer Verlag.

  • Marczenko Z. & Balcerzak M. (2000). Separation Preconcentration and Spectrophotometry in InorganicAnalysis. Amsterdam: Elsevier.

  • Moon C. J. Whateley M. K. G. & Evans A. M. (2006). Introduction to Mineral Exploration (2 ed.). Blackwell Publishing.

  • Ninomiya K. (1998). Natural occurrence. Food Reviews International14(2-3) 177-211.

  • Peterson R. E. & Bollier M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanone oxalydishydrasone. Analytical Chemistry27 1195-1197.

  • Ravnik V. Dermelj M. & Kosta L. (1974). A highly selective diethyldithiocarbamate extraction system in activation analysis of copper indium manganese and zinc Application to the analysis of standard reference materials. Journal of Radioanalytical and Nuclear Chemistry20(2) 443-453. 146 Sabel C. E. Neureuther J. M. & Siemann S. (2010). A spectrophotometric method for the determination of zinc copper and cobalt ions in metalloproteins using Zincon. Analytical Biochemistry 397 218-226. DOI: 10.1016/j.ab.2009.10.037.

  • San Andres M. P. Marina M. L. & Vera S. (1994). Spectrophotometric determination of copper(II) nickel(II) and cobalt(II) as complexes with sodium diethyldithiocarbamate in cationic micellar medium of exadecyltrimethylammonium salts. Talanta 41(2) 179-185. DOI: 10.1016/0039-9140(94)80105-3.

  • Shah S. M. & Paul J. (1972). Simultaneous determination of copper and manganese with sodium diethyl dithiocarbamate. Microchemical Journal17(1) 119-124. DOI: 10.1016/0026-265X(72)90046-X.

  • Stoner R. E. & Dasler W. (1964). Spectrophotometric Determination of Microgram Quantities of Copper in Biologic Materials; Clinical Chemistry 10 845-852.

  • Thakur M. & Deb M. K. (1999). The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and NN%-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta49(3) 561-569.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 626 436 16
PDF Downloads 308 235 5