Simple method of copper analysis using monosodium glutamate and its application in ore analysis

Open access

Abstract

A simple photometric method for copper (II) analysis using monosodium glutamate (MSG) is presented. The method is technically simple, inexpensive, quantitative, and makes use of readily available reagents. The rapid reaction of copper (II) with glutamate in aqueous solution at pH 10 to form a blue complex serves as a basis for the determination of copper (II) in the range of 10-500 μg/ml. Copper recovery is > 82%. The method could be used to determine copper (II) concentrations in iron ore samples.

Al-Sibaai, A. A., & Fogg, A. G. (1973). Stability of dilute standard solutions of antimony, arsenic, iron and rhenium used in colorimetry. Analyst, 98, 732-738 DOI: 10.1039/AN9739800732.

Bastug, A. S., Goz, S. E., Talman, Y., Gokturk, S., Asil, E., & Caliskan, E. (2011). Formation constants and coordination thermodynamics for binary complexes of Cu(II) and some α-amino acids in aqueous solution. Journal of Coordination Chemistry, 64(2), 281-292. DOI: 10.1080/00958972.2010.541454.

Butler, E. J., & Forbes, D. H. S. (1965). A comparison of three absorptiometric methods for the determination of copper in biological materials. Analytica Chimica Acta, 33, 59-66. DOI: 10.1016/S0003-2670(01)84854-6.

Castro, B., Lima, J. L. F. C., & Reis, S. (1995). Potentiometric determination of formation constants of copper(II)/bile acid/peptide in aqueous solute. Journal of Pharmaceutical and Biomedical Analysis, 13(4/5) 465-470.

Ghasemi, J., Ahmadi, Sh., & Torkestani, K. (2003). Simultaneous determination of copper, nickel, cobalt and zinc using zincon as a metallochromic indicator with partial least squares. Analytica Chimica Acta, 487(2), 181-188. DOI: 10.1016/S0003-2670(03)00556-7.

Hamada, Y. Z., Holyfield, H., Rosli, K., & Burkey, T. (2009). Equilibrium models of Cr3+ and Cu2+ with glutamate. Journal of Coordination Chemistry, 62(5), 721-733. DOI: 10.1080/00958970802353660.

Hoste, J., Eeckhout, J., & Gillis, J. (1953). Spectrophotometric determination of copper with cuproine. AnalyticaChimica Acta, 9, 263-274.

Irving, H. M., & Tomlinson, W. R. (1968). Effect of chromium(III) and of other ions on the absorptiometric determination of copper with 2, 2'-biquinolyl. Talanta, 15(11), 1267-1279. DOI: org/10.1016/0039-9140(68)80049-9.

Jacobsen, E., Langmyhr, F. J., & Selmer-Olsen, A. R. (1961). On the use of bis-cyclohexanone-oxalyldihydrazone and bis-acetaldehyde-oxalyldihydrazone in the analysis of copper. Analytica Chimica Acta, 24, 579-588. DOI: 10.1016/0003-2670(61)80120-7.

Kállay, C., Várnagy, K., Micera, G., Sanna, D., & Sóvágó, I. (2005). Copper (II) complexes of oligopeptides containing aspartyl and glutamyl residues. Potentiometric and spectroscopic studies. Journal of Inorganic Biochemistry, 99(7), 1514-1525. DOI: 10.1016/j.jinorgbio.2005.04.009.

Kumar, B., Singh, H. B., Katyal, M., & Sharma, R. L. (1991). Spectrophotometric and derivative spectrophotometric determination of copper (II) with dithizone in aqueous phase. Microchimica Acta, 105(1-3), 79-87.

Larsen, E. R., (1974). Spectrophotometric determination of copper in fertilizer with neocuproine. AnalyticalChemistry, 46(8), 1131-1132. DOI: 10.1021/ac60344a047.

Laznicka, P. (2006). Giant metallic deposit: Future Sources of Industrial Metals. Berlin: Springer Verlag.

Marczenko, Z., & Balcerzak, M. (2000). Separation, Preconcentration and Spectrophotometry in InorganicAnalysis. Amsterdam: Elsevier.

Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction to Mineral Exploration (2 ed.). Blackwell Publishing.

Ninomiya, K., (1998). Natural occurrence. Food Reviews International, 14(2-3), 177-211.

Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanone oxalydishydrasone. Analytical Chemistry, 27, 1195-1197.

Ravnik, V., Dermelj, M., & Kosta, L. (1974). A highly selective diethyldithiocarbamate extraction system in activation analysis of copper, indium, manganese and zinc, Application to the analysis of standard reference materials. Journal of Radioanalytical and Nuclear Chemistry, 20(2), 443-453. 146 Sabel, C. E., Neureuther, J. M., & Siemann, S. (2010). A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Analytical Biochemistry, 397, 218-226. DOI: 10.1016/j.ab.2009.10.037.

San Andres, M. P., Marina, M. L., & Vera, S. (1994). Spectrophotometric determination of copper(II), nickel(II) and cobalt(II) as complexes with sodium diethyldithiocarbamate in cationic micellar medium of exadecyltrimethylammonium salts. Talanta, 41(2), 179-185. DOI: 10.1016/0039-9140(94)80105-3.

Shah, S. M., & Paul, J. (1972). Simultaneous determination of copper and manganese with sodium diethyl dithiocarbamate. Microchemical Journal, 17(1), 119-124. DOI: 10.1016/0026-265X(72)90046-X.

Stoner, R. E., & Dasler, W. (1964). Spectrophotometric Determination of Microgram Quantities of Copper in Biologic Materials; Clinical Chemistry, 10, 845-852.

Thakur, M., & Deb, M. K. (1999). The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N,N%-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta,49(3), 561-569.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 40
PDF Downloads 63 63 17