Xenotime from the Podwiśniówka mine pit, Holy Cross Mountains (South-Central Poland)

Open access

Xenotime from the Podwiśniówka mine pit, Holy Cross Mountains (South-Central Poland)

This report presents the results of petrographical and mineralogical (optical microscopy, SEM/EDS) study of xenotime derived from the Upper (Middle?) Cambrian rocks (Wiśniówka Sandstone Fm.) of the abandoned Podwiśniówka mine pit. This is the first work on this mineral from the Holy Cross Mts. The authigenic xenotime occurs primarily as overgrowths around/on zircon in siliciclastic rocks. Moreover, this mineral is characterized by the large size of the overgrowths reaching 50 μm long and 20 μm wide. The presence of pyritecoated zircon/xenotime aggregates indicates that the xenotime formed prior to hydrothermal quartz-pyrite mineralization. The apparent lack of xenotime and vein pyrite in the tuff-bearing series, compared to the other two series displaying hydrothermal signature (pyrite, hematite, nacrite, jarosite), as well as considerable variations of the xenotime overgrowths in size and morphology, and their dominant irregular patchy-zonal microtexture may provide evidence for direct precipitation of this mineral from hydrothermal fluids.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Dumańska-Słowik M. Heflik W. Natkaniec-Nowak L. & Sikorska M. (2007). Wavellite and variscite in the Cambrian sandstones from the Wiśniówka Duża quarry near Kielce. Przegląd Geologiczny (Polish Geological Review) 4 287 (in Polish).

  • England G.L. Rasmussen B. McNaughton N.J. FLetcher I.R. Groves D.I. & Krapez B. (2001). SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the Archaean Witwatersrand Supergroup of South Africa. Terra Nova 13(5) 360-367.

  • Förster H.-J. (1998). The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region Germany. Part II: Xenotime. American Mineralogist 83 1302-1315.

  • Harlov D.E. Prochazka V. Förster H.-J. & Matějka D. (2008). Origin of monazite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif Czech Republic. Mineralogy and Petrology 94 9-26.

  • Hay D.C. & Dempster T.J. (2009). Zircon behaviour during low-temperature metamorphism. Journal of Petrology 50(4) 571-589. DOI:10.1093/petrology/egp011.

  • Hetherington C.J. Jercinovic M.J. Williams M.L. & Mahan K. (2008). Understanding geologic processes with xenotime: Composition chronology and a protocol for electron probe microanalysis. Chemical Geology 254 133-147.

  • Kosticin N. McNaughton N.J. Griffin B.J. Fletcher I.R. Groves D.I. & Rasmussen B. (2003). Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin South Africa. Geochimica et Cosmochimica Acta 67(4) 709-731.

  • McNaughton N.J. Rasmussen B. & Fletcher I.R. (1999). SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks. Science 285 78-80.

  • Migaszewski Z.M. Gałuszka A. Hałas S. Dołęgowska S. Dąbek J. Budzyk I. & Starnawska E. (2008). Geochemistry and stable sulfur and oxygen isotope ratios of the Podwiśniówka pit pond water generated by acid mine drainage (Holy Cross Mountains south-central Poland). Applied Geochemistry 23 3620-3634.

  • Migaszewski Z.M. Gałuszka A. Pasławski P. & Starnawska E. (2007a). An influence of pyrite oxidation on generation of unique acid pit water: A case study Podwiśniówka quarry Holy Cross Mountains (south-central Poland). Polish Journal of Environmental Studies 16(3) 407-421.

  • Migaszewski Z.M. Starnawska E. & Gałuszka A. (2007b). Gorceixite from the Upper Cambrian rocks of the Podwiśniówka mine pit Holy Cross Mountains (south-central Poland). Mineralogia Polonica 38(2) 171-184.

  • Rainbird R.H. Davis D.W. Stern R.A. Peterson T.D. Smith S.R. Parrish R.R. & Hadlari T. (2006). Ar-Ar and U-Pb geochronology of a late Paleoproterozoic Rift Basin: support for a genetic link with Hudsonian orogenesis Western Churchill Province Nunavut Canada. The Journal of Geology 114 1-17.

  • Rasmussen B. (1996). Early-diagenetic REE-phosphate minerals (florencite crandallite gorceixite and xenotime) in marine sandstones: A major sink for oceanic phosphorus American Journal of Science 296 601-632.

  • Rasmussen B. (2005). Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews 68 197-243.

  • Rasmussen B. Fletcher I.R. & McNaughton N.J. (2001). Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales. Geology 29 963-966.

  • Rasmussen B. Buick R. & Taylor W.R. (1998). Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth and Planetary Science Letters 164 135-149.

  • Rasmussen B. Fletcher I.R. Muhling J.R. Thorne NE W.S. & Broadbent G.C. (2007). Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters 258 249-259.

  • Richter D.K. Krampitz H. Görgen P. Götte T. & Neuser R.D. (2006). Xenotime in the Lower Buntsandstein of Central Europe: Evidence from cathodoluminescence investigation. Sedimentary Geology 183 261-268.

  • Stanisławska M. & Michalik M. (2008). Xenotime-(Y) veins in a Neoproterozoic metamudstone (Małopolska Block S Poland). Mineralogia 39 105-113.

  • Vallini D.A. Rasmussen B. Krapez B. Fletcher I.R. & McNaughton N.J. (2005). Microtextures geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology 52(1) 101-122.

  • Wark D.A. & Miller C.F. (1993). Accessory mineral behaviour during differentiation of a granite suite: monazite xenotime and zircon in the Sweetwater Wash pluton southeastern California U.S.A. Chemical Geology 110 49-67.

  • Żylińska A. Szczepanik Z. & Salwa S. (2006). Cambrian of the Holy Cross Mountains Poland: biostratigraphy of the Wiśniówka Hill succession. Acta Geologica Polonica 56(4) 443-461.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 103 8
PDF Downloads 80 45 8