Heat stress and occupational health and safety – spatial and temporal differentiation

Open access


Evidence of climatic health hazards on the general population has been discussed in many studies but limited focus is placed on developing a relationship between climate and its effects on occupational health. Long working hours with high physical activity can cause health problems for workers ranging from mild heat cramps to severe heat stroke leading to death. The paper presents the possible risk of heat hazard to outdoor workers, using the example of Warsaw. The heat stress hazard, defined by WBGT values above 26 and 28°C and UTCI above 32 and 38°C, is assessed from two perspectives: its spatial distribution on a local scale and its temporal changes during the 21st century due to climate change. City centre and industrial districts were identified as the places with the greatest heat stress hazard. The number of heat stress days in a year (as predicted for the 21st century) is increasing, meaning that heat-related illnesses are more likely to have a direct impact on workers’ health.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adélio RG & Divo AQ 2009 ‘Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments’ Int J Biometeorol vol. 53 pp. 221-230.

  • Bernard TE & Pourmoghani M 1999 ‘Prediction of Workplace Wet Bulb Global Temperature’ Applied Occupational and Environmental Hygiene vol. 14 pp. 126-134.

  • Błażejczyk K 2004 ‘Radiation balance in man in various meteorological and geographical conditions’ Geographia Polonica vol. 77 no. 1 pp. 63-76.

  • Błażejczyk K 2005 ‘Radiation balance of different segments of the human body’ DWD Annalen der Meteorologie vol. 41 no. 1 pp. 313-316.

  • Błażejczyk K 2007 ‘Multiannual and seasonal weather fluctuations and tourism in Poland’ in Climate Change and Tourism Assessment and Copying Strategies eds B Amelung K Błażejczyk & A Matzarakis Institute of Geography and Spatial Organization Polish Academy of Sciences Maastricht-Warsaw-Freiburg pp. 69-90.

  • Błażejczyk K 2011 ‘Mapping of UTCI in local scale (the case of Warsaw)’ Prace i Studia Geograficzne WGSR UW vol. 47 pp. 275-283.

  • Błażejczyk K & Błażejczyk A 2013 ‘Climate change and heat stress in the 21st century - an example from Poland’ in Proceedings of the 15th International Conference on Environmental Ergonomics 11-15th February Queenstown New Zealand eds JD Cotter SJE Lucas & T Mundel Queenstown International Society for Environmental Ergonomics pp. 31-33.

  • Błażejczyk K Bröde P Fiala D Havenith G Holmér I Jendritzky G Kampmann B & Kunert A 2010 ‘Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale’ Miscelanea Geographica vol. 14 pp. 91-102.

  • Błażejczyk K Epstein Y Jendritzky G Staiger H & Tinz B 2012 ‘Comparison of UTCI to selected thermal indices’ Int J Biometeorol vol. 56 pp. 515-535.

  • Błażejczyk K & Kunert A 2006 ‘Differentiation of bioclimatic conditions of urban areas (the case of Poland)’ in 6th International Conference on Urban Climate Preprints June 12-16 2006 Göteborg Sweden Göteborg University pp. 213-216.

  • Błażejczyk K & Kunert A 2011 ‘Bioklimatyczne podstawy rekreacji i turystyki w Polsce 2 wydanie’ (Bioclimatic principles of recreation and tourism in Poland 2nd edition) Monografie IGiPZ PAN vol. 14.

  • Błażejczyk K Lindner-Cendrowska K & Błażejczyk A 2013 ‘Assessment of heat stress at various outdoor spaces in the city (an example from Warsaw)’ in Proceedings of the 15th International Conference on Environmental Ergonomics 11-15th February Queenstown New Zealand eds JD Cotter SJE Lucas & T Mundel Queenstown International Society for Environmental Ergonomics pp. 211-214.

  • Błażejczyk K & Matzarakis A 2007 ‘Assessment of bioclimatic differentiation of Poland based on the human heat balance’ Geographia Polonica vol. 80 no. 1 pp. 63-82.

  • Błażejczyk K & Twardosz R 2010 ‘Long-Term Changes of Bioclimatic Conditions in Cracow (Poland)’ in The Polish Climate in the European Context: An Historical Overview eds R Przybylak R Majorowicz J Brázdil & M Kejna Springer Science + Business Media B.V. pp. 235-246

  • Bröde P Fiala D Błażejczyk K Holmér I Jendritzky G Kampmann B Tinz B & Havenith G 2012 ‘Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)’ Int J Biometeorol vol. 56 pp. 481-494.

  • Bröde P Błażejczyk K Fiala D Havenith G Holmér I Jendritzky G Kuklane K & Kampmann B 2013 ‘The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment’ Industrial Health vol. 51 no. 1 pp. 16-24.

  • Cheung CSC & Hart M 2012 ‘Climate change and thermal comfort in Hong Kong’ Int J Biometeorol DOI.10.1007/ s00484-012-0608-9.

  • The ENSEMBLES project RT3 2013. Available from: [5 Oct. 2013].

  • Epstein Y & Moran DS 2006 ‘Thermal comfort and heat stress indices’ Indust Health vol. 44 pp. 388-398.

  • European Climate Assessment & Dataset 2013. Available from: [5 Oct. 2013].

  • Fiala D Havenith G Bröde P Kampmann B & Jendritzky G 2012 ‘UTCI-Fiala multi-node model of human heat transfer and temperature regulation’ Int J Biometeorol vol. 56 pp. 429-441.

  • Geiger R 1969 ‘Topoclimates’ in World Survey of Climatology vol. 2 General Climatology 2 eds HE Landsberg & H Flohn Elsevier Publishing Company Amsterdam-London-New York pp. 105-138.

  • Heat-waves: risks and responses 2004 Health and Global Environmental Change SERIES no. 2 WHO Geneva.

  • ISO 7243 1989 ‘Hot environments; estimation of the heat stress on working man based on the WBGT-index (wet bulb globe temperature)’ International Organisation for Standardisation Geneva.

  • Jendritzky G Staiger H Bucher K Graetz A & Laschewski G 2011 ‘The perceived temperature. The method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body’ Deutscher Wetterdienst. Available from: [5 Oct. 2013].

  • Kampmann B Bröde P & Fiala D 2012 ‘Physiological responses to temperature and humidity compared to the assessment by UTCI WGBT and PHS’ Int J Biometeorol vol. 56 pp. 505-513.

  • Kunert A 2010 ‘Modeling of UTCI index in various types of landscape’ in Proceedings of the 7th Conference on Biometeorology eds A Matzarakis H Mayer & FM Chmielewski Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg no. 20 pp. 302-307.

  • Lee R 1978 Forest Microclimatology. Columbia University Press New York.

  • Lemke B & Kjellstrom T 2012 ‘Calculating workplace WBGT from meteorological data. A tool for climate change assessment’ Industrial Health vol. 50 pp. 267-278

  • Liljegren JC Carhart RA Lawday P Tschopp S & Sharp R 2008 ‘Modeling the wet bulb globe temperature using standard meteorological measurements’ Journal of Occupational and Environmental Hygiene vol. 5 pp. 645-655

  • Liszewska M Konca-Kędzierska K & Jakubiak B 2012 ‘Opracowanie scenariuszy zmian klimatu dla Polski i wybranych regionów’ (Development of climate change scenarios for Poland and selected regions) Manuscript Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw.

  • Masterson J & Richardson FA 1979 Humidex a method of quantifying human discomfort due to excessive heat and humidity Downsview Ontario Environment Canada.

  • Mayer H & Höppe P 1987 ‘Thermal comfort of man in different urban environments’ Theor Appl Climatol vol. 38 pp. 43-49.

  • Milewski P 2013 ‘Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region’ Geographia Polonica vol. 86 1 pp. 47-54.

  • Oke TR 1987 Boundary layer climates (second edition) Methuen London‑New York.

  • Paszyński J Miara K & Skoczek J 1999 ‘Wymiana energii między atmosferą a podłożem jako podstawa kartowania topoklimatycznego’ (Energy exchange between atmosphere and earth surface as a basis of topoclimatic mapping) Dokumentacja Geograficzna vol. 14.

  • Pickup J & de Dear R 2000 ‘An outdoor thermal comfort index (OUT_SET*) - Part I - The model and its assumptions’ in Biometeorology and urban climatology at the turn of the millenium. Selected papers from the conference ICBICUC’ 99 Sydney [8-12 Nov. 1999] eds R de Dear J Kalma T Oke & A Auliciems WMO Geneva WCASP-50 pp. 279-283.

  • PN-EN 27243 2005 ‘Środowiska gorące. Wyznaczanie obciążenia termicznego działającego na człowieka podczas pracy oparte na wskaźniku WBGT’.

  • Rothfusz LP 1990 The heat index equation NWS Southern Region Technical Attachment SR/SSD 90-23 Fort Worth Texas.

  • Schulte PA & Chun HK 2009 ‘Climate change and occupational safety and health. Establishing a preliminary framework’ Journal of Occupational and Environmental Hygiene vol. 6 pp. 542-554.

  • Special Report on Emissions Scenarios 2000 Cambridge University Press.

  • Steadman RG 1984 ‘A universal scale of apparent temperature’ J Appl Meteorol Climatol vol. 23 pp. 1674-1687.

  • WBGT index 1991. Available from: [5 October 2013].

  • VDI (2008) ‘VDI Guideline 3787 / Part 2: Environmental meteorology: Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate‘ VDI/DIN-Handbuch Reinhaltung der Luft Band 1 B Umweltmeteorologie Beuth Verlag Berlin.

  • Yaglou CP & Minard D 1957 ‘Control of heat casualties at military training centers’ Am Med Ass Arch Ind Hlth vol. 16 pp. 302-316.

Journal information
Impact Factor

CiteScore 2018: 0.62

SCImago Journal Rank (SJR) 2018: 0.236
Source Normalized Impact per Paper (SNIP) 2018: 0.378

Covered by e.g. Web of Science Core Collection by Clarivate Analytics, and SCOPUS by Elsevier
70 points in the Ministerial journal value rating scale

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 141 3
PDF Downloads 183 109 7