Heat stress and occupational health and safety – spatial and temporal differentiation

Open access

Abstract

Evidence of climatic health hazards on the general population has been discussed in many studies but limited focus is placed on developing a relationship between climate and its effects on occupational health. Long working hours with high physical activity can cause health problems for workers ranging from mild heat cramps to severe heat stroke leading to death. The paper presents the possible risk of heat hazard to outdoor workers, using the example of Warsaw. The heat stress hazard, defined by WBGT values above 26 and 28°C and UTCI above 32 and 38°C, is assessed from two perspectives: its spatial distribution on a local scale and its temporal changes during the 21st century due to climate change. City centre and industrial districts were identified as the places with the greatest heat stress hazard. The number of heat stress days in a year (as predicted for the 21st century) is increasing, meaning that heat-related illnesses are more likely to have a direct impact on workers’ health.

Adélio, RG & Divo, AQ 2009, ‘Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments’, Int J Biometeorol, vol. 53, pp. 221-230.

Bernard, TE & Pourmoghani, M 1999, ‘Prediction of Workplace Wet Bulb Global Temperature’, Applied Occupational and Environmental Hygiene, vol. 14, pp. 126-134.

Błażejczyk, K 2004, ‘Radiation balance in man in various meteorological and geographical conditions’, Geographia Polonica, vol. 77, no. 1, pp. 63-76.

Błażejczyk, K 2005, ‘Radiation balance of different segments of the human body’, DWD, Annalen der Meteorologie, vol. 41, no. 1, pp. 313-316.

Błażejczyk, K 2007, ‘Multiannual and seasonal weather fluctuations and tourism in Poland’, in Climate Change and Tourism Assessment and Copying Strategies, eds B Amelung, K Błażejczyk & A Matzarakis, Institute of Geography and Spatial Organization Polish Academy of Sciences, Maastricht-Warsaw-Freiburg, pp. 69-90.

Błażejczyk, K 2011, ‘Mapping of UTCI in local scale (the case of Warsaw)’, Prace i Studia Geograficzne WGSR UW, vol. 47, pp. 275-283.

Błażejczyk, K & Błażejczyk, A 2013, ‘Climate change and heat stress in the 21st century - an example from Poland’, in Proceedings of the 15th International Conference on Environmental Ergonomics, 11-15th February, Queenstown, New Zealand, eds JD Cotter, SJE Lucas & T Mundel, Queenstown, International Society for Environmental Ergonomics, pp. 31-33.

Błażejczyk, K, Bröde, P, Fiala, D, Havenith, G, Holmér, I, Jendritzky, G, Kampmann, B & Kunert, A 2010, ‘Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale’, Miscelanea Geographica, vol. 14, pp. 91-102.

Błażejczyk, K, Epstein, Y, Jendritzky, G, Staiger, H & Tinz, B 2012, ‘Comparison of UTCI to selected thermal indices’, Int J Biometeorol, vol. 56, pp. 515-535.

Błażejczyk, K & Kunert, A 2006, ‘Differentiation of bioclimatic conditions of urban areas (the case of Poland)’, in 6th International Conference on Urban Climate, Preprints, June 12-16 2006, Göteborg, Sweden, Göteborg University, pp. 213-216.

Błażejczyk, K & Kunert, A 2011, ‘Bioklimatyczne podstawy rekreacji i turystyki w Polsce, 2 wydanie’ (Bioclimatic principles of recreation and tourism in Poland, 2nd edition), Monografie IGiPZ PAN, vol. 14.

Błażejczyk, K, Lindner-Cendrowska, K & Błażejczyk, A 2013, ‘Assessment of heat stress at various outdoor spaces in the city (an example from Warsaw)’, in Proceedings of the 15th International Conference on Environmental Ergonomics, 11-15th February, Queenstown, New Zealand, eds JD Cotter, SJE Lucas & T Mundel, Queenstown, International Society for Environmental Ergonomics, pp. 211-214.

Błażejczyk, K & Matzarakis, A 2007, ‘Assessment of bioclimatic differentiation of Poland based on the human heat balance’, Geographia Polonica, vol. 80, no. 1, pp. 63-82.

Błażejczyk, K & Twardosz, R 2010, ‘Long-Term Changes of Bioclimatic Conditions in Cracow (Poland)’, in The Polish Climate in the European Context: An Historical Overview, eds R Przybylak, R Majorowicz, J Brázdil & M Kejna, Springer, Science + Business Media B.V. pp. 235-246

Bröde, P, Fiala, D, Błażejczyk, K, Holmér, I, Jendritzky, G, Kampmann, B, Tinz, B & Havenith, G 2012, ‘Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)’, Int J Biometeorol, vol. 56, pp. 481-494.

Bröde, P, Błażejczyk, K, Fiala, D, Havenith, G, Holmér, I, Jendritzky, G, Kuklane, K &, Kampmann, B 2013, ‘The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment’, Industrial Health, vol. 51, no. 1, pp. 16-24.

Cheung, CSC & Hart, M 2012, ‘Climate change and thermal comfort in Hong Kong’, Int J Biometeorol, DOI.10.1007/ s00484-012-0608-9.

The ENSEMBLES project RT3, 2013. Available from: [5 Oct. 2013].

Epstein, Y & Moran, DS 2006, ‘Thermal comfort and heat stress indices’, Indust Health, vol. 44, pp. 388-398.

European Climate Assessment & Dataset, 2013. Available from: [5 Oct. 2013].

Fiala, D, Havenith, G, Bröde, P, Kampmann, B & Jendritzky, G 2012, ‘UTCI-Fiala multi-node model of human heat transfer and temperature regulation’, Int J Biometeorol, vol. 56, pp. 429-441.

Geiger, R 1969, ‘Topoclimates’, in World Survey of Climatology, vol. 2, General Climatology, 2, eds HE Landsberg & H Flohn, Elsevier Publishing Company Amsterdam-London-New York, pp. 105-138.

Heat-waves: risks and responses, 2004, Health and Global Environmental Change, SERIES, no. 2, WHO, Geneva.

ISO 7243 1989, ‘Hot environments; estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature)’, International Organisation for Standardisation, Geneva.

Jendritzky, G, Staiger, H, Bucher, K, Graetz, A & Laschewski, G 2011, ‘The perceived temperature. The method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body’, Deutscher Wetterdienst. Available from: [5 Oct. 2013].

Kampmann, B, Bröde, P & Fiala, D 2012, ‘Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS’, Int J Biometeorol, vol. 56, pp. 505-513.

Kunert, A 2010, ‘Modeling of UTCI index in various types of landscape’, in Proceedings of the 7th Conference on Biometeorology, eds A Matzarakis, H Mayer & FM Chmielewski, Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, no. 20, pp. 302-307.

Lee, R 1978, Forest Microclimatology. Columbia University Press, New York.

Lemke, B & Kjellstrom, T 2012, ‘Calculating workplace WBGT from meteorological data. A tool for climate change assessment’, Industrial Health, vol. 50, pp. 267-278

Liljegren, JC, Carhart, RA, Lawday, P, Tschopp, S & Sharp, R 2008, ‘Modeling the wet bulb globe temperature using standard meteorological measurements’, Journal of Occupational and Environmental Hygiene, vol. 5, pp. 645-655

Liszewska, M, Konca-Kędzierska, K & Jakubiak, B 2012, ‘Opracowanie scenariuszy zmian klimatu dla Polski i wybranych regionów’, (Development of climate change scenarios for Poland and selected regions), Manuscript, Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw.

Masterson, J & Richardson, FA 1979, Humidex, a method of quantifying human discomfort due to excessive heat and humidity, Downsview, Ontario, Environment Canada.

Mayer, H & Höppe, P 1987, ‘Thermal comfort of man in different urban environments’, Theor Appl Climatol, vol. 38, pp. 43-49.

Milewski, P 2013, ‘Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region’, Geographia Polonica, vol. 86, 1, pp. 47-54.

Oke, TR 1987, Boundary layer climates (second edition), Methuen, London‑New York.

Paszyński, J, Miara, K & Skoczek, J 1999, ‘Wymiana energii między atmosferą a podłożem jako podstawa kartowania topoklimatycznego’, (Energy exchange between atmosphere and earth surface as a basis of topoclimatic mapping), Dokumentacja Geograficzna, vol. 14.

Pickup, J & de Dear, R 2000, ‘An outdoor thermal comfort index (OUT_SET*) - Part I - The model and its assumptions’, in Biometeorology and urban climatology at the turn of the millenium. Selected papers from the conference ICBICUC’ 99, Sydney, [8-12 Nov. 1999], eds R de Dear, J Kalma, T Oke & A Auliciems, WMO, Geneva, WCASP-50, pp. 279-283.

PN-EN 27243 2005, ‘Środowiska gorące. Wyznaczanie obciążenia termicznego działającego na człowieka podczas pracy, oparte na wskaźniku WBGT’.

Rothfusz, LP 1990, The heat index equation, NWS Southern Region Technical Attachment, SR/SSD 90-23, Fort Worth, Texas.

Schulte, PA & Chun, HK 2009, ‘Climate change and occupational safety and health. Establishing a preliminary framework’, Journal of Occupational and Environmental Hygiene, vol. 6, pp. 542-554.

Special Report on Emissions Scenarios 2000, Cambridge University Press.

Steadman, RG 1984, ‘A universal scale of apparent temperature’, J Appl Meteorol Climatol, vol. 23, pp. 1674-1687.

WBGT index, 1991. Available from: [5 October 2013].

VDI (2008) ‘VDI Guideline 3787 / Part 2: Environmental meteorology: Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate‘, VDI/DIN-Handbuch Reinhaltung der Luft, Band 1 B, Umweltmeteorologie, Beuth Verlag, Berlin.

Yaglou, CP & Minard, D 1957, ‘Control of heat casualties at military training centers’, Am Med Ass Arch Ind Hlth, vol. 16, pp. 302-316.

Miscellanea Geographica

Regional Studies on Development

Journal Information


CiteScore 2017: 0.73

SCImago Journal Rank (SJR) 2017: 0.404
Source Normalized Impact per Paper (SNIP) 2017: 0.759

Covered by e.g. Web of Science Core Collection by Clarivate Analytics, and SCOPUS by Elsevier
14 points in the Ministerial journal value rating scale

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 20
PDF Downloads 30 30 15