On the spatial differentiation of energy transitions: Exploring determinants of uneven wind energy developments in the Czech Republic

Open access

Abstract

Wind energy research is dominated by studies of local acceptance (or not) of wind farms and comparative studies at a national level. Research on the spatial differentiation of wind energy developments at the regional level is still insufficient, however. This study provides new empirical evidence for the extent to which regional differences in the deployment of wind energy are related to specific environmental and socioeconomic factors, by a statistical analysis of data for districts in the Czech Republic. Unlike previous studies, we found that the installed capacity of wind energy cannot be well predicted by wind potential, land area and population density in an area. In the Czech Republic, wind farms more likely have been implemented in more urbanised, environmentally deprived coal-mining areas that are affected by economic depression. It seems that in environmentally deprived areas, wind energy is more positively accepted as an alternative source to coal, and the economic motivation (financial benefits for municipalities) can have a greater effect on local acceptance, while public opposition is less efficient due to lower social capital and involvement in political matters. Based on these results, some implications for the planning and spatial targeting of new wind farms are discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AITKEN M. (2010): Why we still don’t understand the social aspects of wind power: A critique of key assumptions within the literature. Energy Policy 38(4): 1834–1841.

  • BALTA-OZKAN N. LE GALLO J. (2018): Spatial variation in energy attitudes and perceptions: Evidence from Europe. Renewable and Sustainable Energy Reviews 81: 2160–2180.

  • BALTA-OZKAN N. WATSON T. MOCCA E. (2015): Spatially uneven development and low carbon transitions: Insights from urban and regional planning. Energy Policy 85: 500–510.

  • BALTA-OZKAN N. YILDIRIM J. CONNOR P. M. (2015): Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach. Energy Economics 51: 417–429.

  • BECKMAN J. XIARCHOS I. M. (2013): Why are Californian farmers adopting more (and larger) renewable energy operations? Renewable Energy 55: 322–330.

  • BOLLINGER B. GILLINGHAM K. (2012): Peer effects in the diffusion of solar photovoltaic panels. Marketing Science 31(6): 900–912.

  • BOYD A. D. PAVEGLIO T. B. (2015): “Placing” Energy Development in a Local Context: Exploring the Origins of Rural Community Perspectives. Journal of Rural and Community Development 10(2): 1–20.

  • BREUKERS S. WOLSINK M. (2007): Wind power implementation in changing institutional landscapes: An international comparison. Energy policy 35(5): 2737–2750.

  • BRIDGE G. BOUZAROVSKI S. BRADSHAW M. EYRE N. (2013): Geographies of energy transition: Space place and the low-carbon economy. Energy policy 53: 331–340.

  • BUEN J. (2006): Danish and Norwegian wind industry: The relationship between policy instruments innovation and diffusion. Energy policy 34(18): 3887–3897.

  • CALVERT K. (2016). From ‘energy geography’ to ‘energy geographies’ Perspectives on a fertile academic borderland. Progress in Human Geography 40(1): 105–125.

  • CHALUPA Š. HANSLIAN D. (2015): Analýza větrné energetiky v ČR. Praha Komora obnovitelných zdrojů energie [online]. Available at: http://www.csve.cz/img/wysiwyg/file/KomoraOZE_analyza-potencial-OZE_dilci-VTE_log.pdf

  • COWELL R. BRISTOW G. MUNDAY M. (2011): Acceptance acceptability and environmental justice: the role of community benefits in wind energy development. Journal of Environmental Planning and Management 54(4): 539–557.

  • CZECH STATISTICAL OFFICE (2011): Data from Population Census 2011 [online] Available at: https://www.czso.cz/csu/sldb

  • CZECH WIND ENERGY ASSOCIATION (CWEA) (2018): Current installation in wind [online]. Available at: http://www.csve.cz/clanky/aktualni-instalace-vte-cr/120

  • DALLA VALLE A. FURLAN C. (2011): Forecasting accuracy of wind power technology diffusion models across countries. International Journal of Forecasting 27(2): 592–601.

  • DAVIES S. W. DIAZ-RAINEY I. (2011): The patterns of induced diffusion: Evidence from the international diffusion of wind energy. Technological forecasting and social change 78(7): 1227–1241.

  • DHARSHING S. (2017): Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy research & social science 23: 113–124.

  • DIEBOLT C. MISHRA T. PARHI M. (2016): Dynamics of Distribution and Diffusion of New Technology: A Contribution to the Historical Economic and Social Route of a Developing Economy. Cham Springer.

  • EK K. PERSSON L. JOHANSSON M. WALDO. (2013): Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities. Energy Policy 58: 135–141.

  • ENERGY REGULATORY OFFICE (ERO) (2018): Roční zpráva o provozu ES ČR 2017 [online]. Available at: https://www.eru.cz/zpravy-o-provozu-elektrizacnisoustavy#2018

  • FAST S. MABEE W. (2015): Place-making and trust-building: The influence of policy on host community responses to wind farms. Energy Policy 81: 27–37.

  • FERGUSON-MARTIN C. J. HILL S. D. (2011): Accounting for variation in wind deployment between Canadian provinces. Energy Policy 39(3): 1647–1658.

  • FIRESTONE J. BATES A. KNAPP L. A. (2015): See me Feel me Touch me Heal me: Wind turbines culture landscapes and sound impressions. Land Use Policy 46: 241–249.

  • FOURNIS Y. FORTIN M. J. (2017): From social ‘acceptance’ to social ‘acceptability’ of wind energy projects: towards a territorial perspective. Journal of environmental planning and management 60(1): 1–21.

  • FRANTÁL B. (2016): Living on coal: Mined-out identity community displacement and forming of anti-coal resistance in the Most region Czech Republic. Resources Policy 49 (September): 385–393.

  • FRANTÁL B. KUČERA P. (2009): Impacts of the operation of wind turbines as perceived by residents in concerned areas. Moravian Geographical Reports 17(2): 34–45.

  • FRANTÁL B. KUNC J. (2010): Factors of the uneven regional development of wind energy projects (a case of the Czech Republic). Geografický Časopis/Geographical Journal (Slovak) 62(3): 183–201.

  • FRANTÁL B. KUNC J. (2011): Wind turbines in tourism landscapes: Czech experience. Annals of tourism research 38(2): 499–519.

  • FRANTÁL B. NOVÁKOVÁ E. (2014): A Curse of Coal? Exploring Unintended Regional Consequences of Coal Energy in the Czech Republic. Moravian Geographical Report 22(2): 55–65.

  • FRANTÁL B. NOVÁKOVÁ E. (2017). Regionální diferenciace rozvoje větrné energetiky. Energie 21(4): 18–20.

  • FRANTÁL B. MALÝ J. (2017): Close or renew? Factors affecting local community support for rebuilding nuclear power plants in the Czech Republic. Energy Policy 104(5): 134–143.

  • FRANTÁL B. PASQUALETTI M. VAN DER HORST D. (2014): New trends and challenges for energy geographies: Introduction to the Special Issue. Moravian Geographical Reports 22(2): 2–6.

  • FRANTÁL B. VAN DER HORST D. KUNC J. JAŇUROVÁ M. (2017): Landscape disruption or just a lack of economic benefits? Exploring factors behind the negative perceptions of wind turbines. Tájökológiai Lapok (Hungarian Journal of Landscape Ecology) 13(2): 139–147.

  • FRANTÁL B. VAN DER HORST D. MARTINÁT S. SCHMITZ S. TESCHNER N. SILVA L. GOLOBIC M. ROTH M. (2018). Spatial targeting synergies and scale: Exploring the criteria of smart practices for siting renewable energy projects. Energy Policy 120: 85–93.

  • GOETZKE F. RAVE T. (2016): Exploring heterogeneous growth of wind energy across Germany. Utilities Policy 41: 193–205.

  • GRAZIANO M. GILLINGHAM K. (2014): Spatial patterns of solar photovoltaic system adoption: the influence of neighbours and the built environment. Journal of Economic Geography 15(4): 815–839.

  • HÄGERSTRAND T. (1968): Innovation Diffusion as a Spatial Process. Chicago University of Chicago Press.

  • HANSEN T. COENEN L. (2015). The geography of sustainability transitions: Review synthesis and reflections on an emergent research field. Environmental innovation and societal transitions 17: 92–109.

  • HANSLIAN D. et al. (2008): Odhad realizovatelného potenciálu větrné energie na území ČR. Praha Ústav fyziky atmosféry AV ČR.

  • HEISKANEN E. MATSCHOSS K. (2017): Understanding the uneven diffusion of building-scale renewable energy systems: A review of household local and country level factors in diverse European countries. Renewable and Sustainable Energy Reviews 75: 580–591.

  • HOEFNAGELS E. T. A. JUNGINGER H. M. PANZER C. RESCH G. HELD A. (2011): Long Term Potentials and Costs of RES – Part I: Potentials Diffusion and Technological learning. Utrecht Utrecht University.

  • HOWELLS J. BESSANT J. (2012): Introduction: innovation and economic geography: a review and analysis. Journal of economic geography 12(5): 929–942.

  • JANHUNEN S. HUJALA M. PÄTÄRI S. (2014): Owners of second homes locals and their attitudes towards future rural wind farm. Energy Policy 73: 450–460.

  • JOBERT A. LABORGNE P. MIMLER S. (2007): Local acceptance of wind energy: Factors of success identified in French and German case studies. Energy policy 35(5): 2751–2760.

  • LANGER K. DECKER T. ROOSEN J. MENRAD K. (2016): A qualitative analysis to understand the acceptance of wind energy in Bavaria. Renewable and Sustainable Energy Reviews 64: 248–259.

  • LAUF T. EK K. GAWEL E. LEHMANN P. SÖDERHOLM P. (2018): The Regional Heterogeneity of Wind Power Deployment: An Empirical Investigation of Land-use Policies in Germany and Sweden. UFZ Discussion Papers 1: 1–30.

  • LUPP G. BASTIAN O. SYRBE R. U. STEINHÄUßER R. (2014): Perceptions of energy crop production by lay people and farmers using the ecosystem services approach. Moravian Geographical Reports 22(2): 15–25.

  • MANN D. LANT C. SCHOOF J. (2012): Using map algebra to explain and project spatial patterns of wind energy development in Iowa. Applied Geography 34: 219–229.

  • MARTINAT S. NAVRATIL J. TROJAN J. FRANTAL B. KLUSACEK P. PASQUALETTI M. J. (2017): Interpreting regional and local diversities of the social acceptance of agricultural AD plants in the rural space of the Moravian-Silesian Region (Czech Republic). Rendiconti Lincei 28(3): 535–548.

  • MARTINOVSKÝ P. MAREŠ M. (2012): Political support for nuclear power in Central Europe. International Journal of Nuclear Governance Economy and Ecology 3(4): 338–359.

  • MBZIBAIN A. HOCKING T. J. TATE G. ALI S. (2013): Renewable enterprises on UK farms: Assessing levels of uptake motivations and constraints to widespread adoption. Biomass and bioenergy 49: 28–37.

  • MINISTRY OF AGRICULTURE (2011): Public Register of Land (pLPIS) [online] Available at: http://eagri.cz/public/app/lpisext/lpis/verejny2/plpis/

  • OTTINGER G. (2013): The winds of change: environmental justice in energy transitions. Science as Culture 22(2): 222–229.

  • OUTKA U. (2012): Environmental justice issues in sustainable development: Environmental justice in the renewable energy transition. Journal of Environmental and Sustainability Law 19(1): 60.

  • PALM J. TENGVARD M. (2011): Motives for and barriers to household adoption of small-scale production of electricity: examples from Sweden. Sustainability: Science Practice and Policy 7(1): 6–15.

  • PASQUALETTI M. J. BROWN M. A. (2014): Ancient discipline modern concern: Geographers in the field of energy and society. Energy Research & Social Science 1: 122–133.

  • PEARCE J. R. RICHARDSON E. A. MITCHELL R. J. SHORTT N. K. (2010): Environmental justice and health: the implications of the socio-spatial distribution of multiple environmental deprivation for health inequalities in the United Kingdom. Transactions of the Institute of British Geographers 35(4): 522–539.

  • PETTERSSON M. EK K. SÖDERHOLM K. SÖDERHOLM P. (2010): Wind power planning and permitting: Comparative perspectives from the Nordic countries. Renewable and Sustainable Energy Reviews 14(9): 3116–3123.

  • PIRIA R. HOCKENOS P. MÜLLER-KRAENNER S. ONDRICH J. (2014): Greening the Heartlands of Coal in Europe. Insights from a Czech-German-Polish Dialogue on Energy Issues. Berlin Heinrich Böll Stiftung.

  • RAND J. HOEN B. (2017): Thirty years of North American wind energy acceptance research: What have we learned?. Energy research & social science 29: 135–148.

  • RAO K. U. KISHORE V. V. N. (2009): Wind power technology diffusion analysis in selected states of India. Renewable Energy 34(4): 983–988.

  • RICHARDSON E. A. PEARCE J. MITCHELL R. SHORTT N. K. (2013): A regional measure of neighborhood multiple environmental deprivation: Relationships with health and health inequalities. The Professional Geographer 65(1): 153–170.

  • ROTH M. EITER S. RÖHNER S. KRUSE A. SCHMITZ S. FRANTÁL B. CENTERI C. FROLOVA M. BUCHECKER M. STOBER D. KARAN I. VAN DER HORST D. [eds.] (2018): Renewable Energy and Landscape Quality. Berlin Jovis.

  • SARDIANOU E. GENOUDI P. (2013): Which factors affect the willingness of consumers to adopt renewable energies? Renewable energy 57: 1–4.

  • SCHAFFER A. J. BRUN S. (2015): Beyond the sun – socioeconomic drivers of the adoption of small-scale photovoltaic installations in Germany. Energy Research & Social Science 10: 220–227.

  • SOVACOOL B. K. DWORKIN M. H. (2015): Energy justice: Conceptual insights and practical applications. Applied Energy 142: 435–444.

  • SOVACOOL B. K. BURKE M. BAKER L. KOTIKALAPUDI C. K. WLOKAS H. (2017): New frontiers and conceptual frameworks for energy justice. Energy Policy 105: 677–691.

  • STAID A. GUIKEMA S. D. (2013): Statistical analysis of installed wind capacity in the United States. Energy Policy 60: 378–385.

  • SUN C. ZHU X. MENG X. (2016): Post-Fukushima public acceptance on resuming the nuclear power program in China. Renewable and Sustainable Energy Reviews 62: 685–694.

  • SUŠKEVIČS N. B. EITER S. MARTINAT S. STOBER D. VOLLMER E. DE BOER C. L. BUCHECKER M. (2019): Regional variation in public acceptance of wind energy development in Europe: What are the roles of planning procedures and participation? Land use policy 81: 311–323.

  • TATE G. MBZIBAIN A. ALI S. (2012): A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy. Energy Policy 49: 400–409.

  • TOKE D. BREUKERS S. WOLSINK M. (2008): Wind power deployment outcomes: How can we account for the differences? Renewable and sustainable energy reviews 12(4): 1129–1147.

  • TRANTER R. B. SWINBANK A. JONES P. J. BANKS C. J. SALTER A. M. (2011): Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England. Energy Policy 39(5): 2424–2430.

  • VAN DER HORST D. (2009). Spatial planning of wind turbines and the limits of ‘objective’ science. Moravian Geographical Reports 17(2): 46–51.

  • VAN DER HORST D. (2007): NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policy 35(5): 2705–2714.

  • VAN DER HORST D. TOKE D. (2010): Exploring the landscape of wind farm developments; local area characteristics and planning process outcomes in rural England. Land Use Policy 27(2): 214–221.

  • VYSTOUPIL J. HOLEŠINSKÁ A. KUNC J. MARYÁŠ J. SEIDENGLANZ D. ŠAUER M. TONEV P. VITURKA M. (2006): Atlas cestovního ruchu České republiky. Praha Ministerstvo pro místní rozvoj ČR.

  • WOLSINK M. (2012): Wind Power: Basic Challenge Concerning Social Acceptance. In: Meyers R. A. [ed.]: Encyclopedia of Sustainability Science and Technology 17: 12218–12254. New York Springer.

  • XIA F. SONG F. (2017): The uneven development of wind power in China: Determinants and the role of supporting policies. Energy Economics 67: 278–286.

  • YAMANE F. OHGAKI H. ASANO K. (2011): Social factors affecting economic welfare of the residents around nuclear power plants in Japan. Energy Procedia 9: 619–629.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 11
PDF Downloads 62 62 6