Landscape degradation at different spatial scales caused by aridification

Open access

Abstract

Landscape responses to degradation caused by aridification bring the landscape system into a new equilibrium state. The system transformation may entail irreversible changes to its constituting parameters. This paper analyses the impact of aridification on landscape degradation processes in the sand-covered landscapes of the Hungarian Danube-Tisza Interfluve region at the regional, landscape, and local site scales. Changes in groundwater level (well data), lake surface area (Modified Normalized Difference Water Index) and vegetation cover (Enhanced Vegetation Index) were analysed over time periods of 12–60 years. Significant regional variation in decreasing groundwater levels is observed and limits the regional applicability of this indicator. Applying the lake surface area parameter from remote sensing data demonstrated greater utility, identifying several local lakes in the landscapes which have dried out. Analysis of the vegetation response indicated minor changes over the 2000–2014 time period and did not indicate a landscape system change. Landscape degradation as a result of changes in groundwater, vegetation, land cover and land use is clearly identified exclusively in local lake areas, but at the landscape scale, changes in the water balance are found in phases of system stability and transformation. Thresholds are identified to support policy and management towards landscape degradation neutrality.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ALBERT B. M. (2015): Holocene aridification vegetation change sedimentation regime and limits of carbon isotope data as indicated by the alluvial pollen sites of Arroyo Grande and El Molino in North-Central Mexico. Quaternary International 377(7): 2–17.

  • BARTHOLY J. PONGRÁCZ R. (2010): Analysis of precipitation conditions for the Carpathian Basin based on extreme indices in the 20th century and climate simulations for the 21st century. Physics and Chemistry of the Earth Parts A/B/C 35(1): 43–51.

  • BARTHOLY J. PONGRÁCZ R. KIS A. MIKLÓS E. (2011): Analysis of possible regional climate change in the Carpathian Basin on the basis of ENSEMBLES model simulations. Geophysical Research Abstracts 13: 11449.

  • BASTIAN O. STEINHARDT U. [eds.] (2002): Development and Perspectives of Landscape Ecology. Dordrecht Springer.

  • BLANKA V. MEZŐSI G. MEYER B. C. (2013): Projected changes in the drought hazard in Hungary due to climate change. Időjárás 117(2): 219–237.

  • BRIDGES E. M. OLDEMAN L. R. (1999): Global assessment of human-induced land degradation. Arid Soil Research and Rehabilitation 13(4): 319–325.

  • BRUNSDEN D. (2001): A critical assessment of the sensitivity concept in geomorphology. Catena 42(2–4): 99–123.

  • BUENDIA C. BATALLA R. J. SABATER S. PALAU A. MARCE R. (2015): Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin. Land Degradation & Development 27(3): 823–838.

  • DEGROOT R. S. (1992): Functions of Nature. Groningen Wolters-Noordhoff.

  • FARINA A. (2006): Principles and Methods in Landscape Ecology. Towards a Science of the Landscape. Springer Landscape Series 3.

  • FIALA K. BLANKA V. LADÁNYI Z. SZILASSI P. BENYHE B. DOLINAJ D. PÁLFAI P. (2014): Drought Severity and its Effect on Agricultural Production in the Hungarian-Serbian Cross-Border Area. Journal of Environment Geography 7(3–4): 43–51.

  • HUETE A. DIDAN K. MIURA T. RODRIGUEZ E. P. GAO X. FERREIRA L. G. (2002): Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1–2): 195–213.

  • KAIRIS O. KOSMAS C. KARAVITIS C. RITSEMA C. SALVATI L. et al. (2014): Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation causes and implications for management. Environmental Management 54(5): 971–982.

  • KEESSTRA S. D VAN HUISSTEDEN J. VANDENBERGHE J. VAN DAM O. DE GIER J. PLEIZIER I. D. (2005): Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 69(1–4): 191–207.

  • KEESSTRA S. D. (2007): Impact of natural reforestation on floodplain sedimentation in the Dragonja basin SW Slovenia. Earth Surface Processes and Landforms 32(1): 49–65.

  • KERTÉSZ Á. (2009): The global problem of land degradation and desertification. Hungarian Geographical Bulletin 58(1): 19–31.

  • KERTÉSZ Á. MIKA J. (1999): Aridification - Climate Change in South-Eastern Europe. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy 24(10): 913–920.

  • KIRCHNER A. (2014): Rekonstruktion der spätpleistozänen und holozänen Landschaftsgenese im Guapi-Macacu Einzugsgebiet Rio de Janeiro Südostbrasilien. Dissertation Leipzig University.

  • KOHÁN B. (2014): GIS-based Analyses of the Aridification of the Danube-Tisza Interfluve. Theses of the PhD Doctoral Dissertation Budapest Eötvös Loránd University.

  • KUTI L. VATAI J. MÜLLER T. KERÉK B. (2002): Change of the groundwater level on the Danube-Tisza Hilly Region. Földtani Közlöny 132 (Special Issue): 317–325.

  • LADA (2016): Field Manual for Local Level Land Degradation Assessment in Drylands. LADA-L Part 1: Methodological Approach Planning and Analysis. Rome FAO.

  • LADÁNYI Z. RAKONCZAI J. DEÁK J. Á. (2011a): A Hungarian landscape under strong natural and human impact in the last century. Carpathian Journal of Earth and Environmental Sciences 6(2): 35–44.

  • LADÁNYI Z. RAKONCZAI J. VAN LEEUWEN B. (2011b): Evaluation of precipitation-vegetation interaction on a climate-sensitive landscape using vegetation indices. Journal of Applied Remote Sensing 5: 053519 (Apr 14).

  • LOVETT G. M. TURNER M. G. JONES C. G. WEATHERS K. C. [eds.] (2005): Ecosystem function in heterogeneous landscapes. New York Springer.

  • MEYER B. C. (1997): Landschaftsstrukturen und Regulationsfunktionen in Intensivagrarlandschaften im Raum Leipzig-Halle. Regionalisierte Umweltqualitätsziele – Funktionsbewertungen – multikriterielle Landschaftsoptimierung unter Verwendung von GIS. Dissertation. Leipzig UFZ-Bericht 24/1997.

  • MEYER B. C. GRABAUM R. (2008): MULBO – Model framework for multicritieria landscape assessment and optimisation – A support system for spatial land use decision. Landscape Research 33(2): 155–179.

  • MEZŐSI G. BATA T. MEYER B. C. BLANKA V. LADÁNYI Z. (2014): Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain Carpathian Basin. International Journal of Disaster Risk Science 5(2): 136–146.

  • MEZŐSI G. BLANKA V. BATA T. KOVÁCS F. MEYER B. C. (2015): Estimation of regional differences in wind erosion sensitivity in Hungary. Natural Hazards and Earth System Sciences 15: 97–107.

  • MEZŐSI G. BLANKA V. LADÁNYI Z. BATA T. URDEA P. FRANK A. MEYER B. C. (2016): Expected mid- and long-term changes in drought hazard for the south-eastern Carpathian basin. Carpathian Journal of Earth and Environmental Sciences 11(2): 355–366.

  • MEZŐSI G. MEYER B. C. LOIBL W. AUBRECHT C. CSORBA P. BATA T. (2013): Assessment of regional climate change impacts on Hungarian landscapes. Regional Environmental Change 13(4): 797–811.

  • MIKA J. HORVÁTH S. Z. MAKRA L. (2001): Impact of documented land use changes on the surface albedo and evapotranspiration in a plain watershed. Physics and Chemistry of the Earth Part B: Hydrology Oceans and Atmosphere 26(7): 601–606.

  • NASSAUER J. I. OPDAM P. (2008): Design in science: extending the landscape ecology paradigm. Landscape Ecology 23: 633–644.

  • NEEF E. (1967): Die theoretischen Grundlagen der Landschaftslehre. Haack VEB Gotha.

  • PÁLFAI I. HERCEG Á. (2011): Droughtness of Hungary and Balkan Peninsula. Riscuri si Catastrofe 9: 145–154.

  • RAKONCZAI J. (2007): Global change and landscape change in Hungary. Geografia fisica e dinamica quaternaria 30(2): 229–232.

  • RAKONCZAI J. (2011): Effects and consequences of global climate change in the Carpathian Basin. In: Blanco J. Kheradmand H. [eds.]: Climate Change – Geophysical Foundations and Ecological Effects (pp. 297–322). Rijeka InTech.

  • RAKONCZAI J FEHÉR Z. (2015): Function in change of climatic in the temporal change on the groundwater supply in the Hungarian Plain. Hidrológiai Közlöny 95(1): 1–16. (in Hungarian).

  • RANNOW S. LOIBL W. GREIVING S. GRUEHN D. MEYER B. C. (2010): Potential impacts of climate change in Germany – identifying regional priorities for adaptation activities in spatial planning. Landscape and Urban Planning. 98(3–4): 160–171.

  • REED M. S. BUENEMANN M. ATLHOPHENG J. AKHTAR-SCHUSTER M. BACHMANN F. et al. (2011): Cross-scale monitoring and assessment of land degradation and sustainable land management: a methodological framework for knowledge management. Land Degradation and Development 22: 261–271.

  • SALVATI L. FORINO G. (2014): A ‘laboratory’ of landscape degradation: social and economical implications for sustainable development in peri-urban areas. International Journal of Innovation Sustainable Development 8(3): 232–249.

  • SANJUÁN Y. GÓMEZ-VILLAR A. NADAL-ROMERO E. ÁLVAREZ-MARTÍNEZ J. ARNÁEZ J. et al. (2016): Linking Land Cover Changes in the Sub-Alpine and Montane Belts to Changes in a Torrential River. Land Degradation and Development 27(2): 179–189.

  • SORANNO P. A. CHERUVELIL K. S. BISSELL E. G. BREMIGAN M. T. DOWNING J. A. et al. (2014): Cross-scale interactions: quantifying multiscaled cause – effect relationships in macrosystems. Frontiers in Ecology and Environment 12(1): 65–73.

  • STOCKING M. MURNAGHAN N. (2000): Land Degradation – Guidelines for field Assessment. University of East Anglia Norwich UK Available at: http://archive.unu.edu/env/plec/l-degrade/index-toc.html

  • SZALAI J. (2012): The effect of weather extremes on the development of the groundwater flow of the Danube-Tisza River. VI. Hungarian Geoscientific Conference Szeged: pp. 804–812. [cit.20.01.2017]. Available at: http://geography.hu/mfk2012/pdf/Szalai_jozsef.pdf (in Hungarian).

  • SZALAI J. (2014): The changes in groundwater system in Hungary. 2nd Wahastrat Conference Szeged Hungary: 28. [cit.20.01.2017]. Available at: https://wahastrat.vizugy.hu/esemeny/20140616a/Szalai_20140616.pdf (in Hungarian).

  • SZALAI J. KOHÁN B. NAGY G. (2014): Space Statistic Analysis of the Groundwater Level Detection Network of the Danube-Tisza River 32. Hidrológiai Konferencia Szeged: 14. [cit.20.01.2017]. Available at: http://www.hidrologia.hu/vandorgyules/32/dolgozatok/word/0712_szalai_jozsef.pdf (in Hungarian).

  • UNEP (1997): World atlas of desertification 2nd Edition Middleton N. Thomas D. [eds.]. London Arnold.

  • USHER M. B. (2001): Landscape sensitivity: from theory to practice. Catena 42(2–4): 375–383.

  • VERBURG P. H. ERB K. H. MERTZ O. ESPINDOLA G. (2013): Land System Science: between global challenges and local realities. Current Opinion in Environmental Sustainability 5(5): 433–437.

  • XU H. (2006): Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14): 3025–3033.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 147 3
PDF Downloads 136 81 1