Exploring the variability and geographical patterns of population characteristics: Regional and spatial perspectives

Open access


The variability and geographical patterns of population characteristics are key topics in Human Geography. There are many approaches to exploring and quantitatively measuring this issue. Besides standard aspatial statistical methods, there is no universal framework for incorporating regional and spatial aspects into the analysis of areal data. This is mainly because complications, such as the Modifiable Areal Unit Problem or the checkerboard problem, hinder analysis. In this paper, we use two approaches which uniquely combine regional and spatial perspectives of the analysis of variability. This combination brings new insights into the exploration of the variability and geographical patterns of population characteristics. The relationship between regional and spatial approaches is studied with models in a regular grid, using variability decomposition (Theil index) as an example of the regional approach, and spatial autocorrelation (Moran’s I) as an example of the spatial approach. When applied to empirical data based on the Czech censuses between 1980 and 2011, the combination of these two approaches enables us to categorise the studied phenomena according to the regional and spatial nature of their variability. This is a useful advance, especially for assessing evolution over time or comparisons between different phenomena.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ANSELIN L. (1988): Spatial Econometrics: Methods and Models. Dordrecht Kluwer.

  • ANSELIN L. (1995): Local Indicators of Spatial Association – LISA. Geographical Analysis 27(2): 93–115.

  • ANSELIN L. (2003): An introduction to spatial autocorrelation analysis with Geoda. Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois Urbana-Champaign USA. [online]. [cit. 05.04.2013]. Available at: http://www.utdallas.edu/~briggs/poec6382/geoda_spauto.pdf

  • ANSELIN L. REY S. J. (1991): Properties of tests for spatial dependence in linear-regression models. Geographical Analysis 23(2): 112–131.

  • ANSELIN L. SYABRI I. KHO Y. (2004): GeoDa: An introduction to spatial data analysis. Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois Urbana-Champaign USA. [online]. [cit. 05.04.2013]. Available at: http://www.csiss.org/events/workshops/geodaGA.pdf

  • ARBIA G. (1989): Spatial Data Configuration in Statistical Analysis of Regional Economic and Related Problems. Boston Kluwer.

  • ARBIA G. (2000): Some critique to statistical measures of spatial concentration and convergence. International Advances in Economic Research 6(3): 590.

  • ARBIA G. (2001): The role of spatial effects in the empirical analysis of regional concentration. Journal of Geographical Systems 3(3): 271–281.

  • BLAŽEK J. NETRDOVÁ P. (2012): Aktuální tendence lokální diferenciace vybraných socioekonomických jevů v Česku: směřuje vývoj k větší mozaikovitosti prostorového uspořádání? Geografie 117(3): 266–288.

  • BOOTS B. TIEFELSDORF M. (2000): Global and local spatial autocorrelation in bounded regular tessellations. Journal of Geographical Systems 2(4): 319–348.

  • BRÜLHART M. TRAEGER R. (2005): An account of geographic concentration patterns in Europe. Regional Science and Urban Economics 35(6): 597–624.

  • CLIFF A. D. ORD J. K. (1973): Spatial Autocorrelation. London Pion.

  • COWELL F. A. FLACHAIRE E. (2007): Income distribution and inequality measurement: The problem of extreme values. Journal of Econometrics 141(2): 1044–1072.

  • Czech Statistical Office (2014): Results of population censes 1980 1991 2001 and 2011 for municipalities in a regional structure in 2011. Prague Czech Statistical Office.

  • ELBERS C. LAJOUW P. F. MISTIAEN J. A. ÖZLER B. (2008): Reinterpreting between-group inequality. The Journal of Economic Inequality 6(3): 231–245.

  • FOTHERINGHAM A. S. (1997): Trends in quantitative methods I: stressing the local. Progress in Human Geography 21(1): 88–96.

  • FOTHERINGHAM A. S. BRUNSDON C. CHARLTON M. (2000): Quantitative geography – Perspectives on spatial data analysis. London SAGE.

  • GETIS A. (2007): Reflections on spatial autocorrelation. Regional Science and Urban Economics 37(4): 491–496.

  • GETIS A. ALDSTADT J. (2004): Constructing the spatial weights matrix using a local statistic. Geographical Analysis 36(2): 90–104.

  • GUIMARAES P. FIGUEIREDO O. WOODWARD D. (2011): Accounting for neighboring effects in measures of spatial concentration. Journal of Regional Science 51(4): 678–693.

  • HAMPL M. [eds.] (1999): Geography of Societal Transformation in the Czech Republic. Prague Department of Social Geography and Regional Development Faculty of Science Charles University in Prague.

  • IMRE A. R. NOVOTNÝ J. ROCCHINI D. (2012): The Korcak-exponent: a non-fractal descriptor for landscape patchiness. Ecological Complexity 12: 70–74.

  • KLADIVO P. PTÁČEK P. ROUBÍNEK P. ZIENER K. (2012): The Czech-Polish and Austrian-Slovenian borderlands – similarities and differences in the development and typology of regions. Moravian Geographical Reports 20(3): 22–37.

  • KLAPKA P. HALÁS M. NETRDOVÁ P. NOSEK V. (2016): The efficiency of areal units in spatial analysis: Assessing the performance of functional and administrative regions. Moravian Geographical Reports 24(2): 47–59.

  • KORČÁK J. (1938): Deux types fondamentaux de distribution statistique. Bulletin de l'Institute International de Statistique 30: 295–299.

  • LAFOURCADE M. MION G. (2007): Concentration agglomeration and the size of plants. Regional Science and Urban Economics 37(1): 46–68.

  • LAMBERT P. J. ARONSON J. R. (1993): Inequality decomposition analysis and the Gini coefficient revisited. The Economic Journal 103(420): 1221–1227.

  • LITCHFIELD J. A. (1999): Inequality: Methods and Tools. World’s Bank Web Site on Inequality Poverty and Socio-economic Performance. [online]. [cit. 30.05.2013]. Available at: http://siteresources.worldbank.org/INTPGI/Resources/Inequality/litchfie.pdf

  • LONGFORD N. T. PITTAU M. G. ZELLI R. MASSARI R. (2012): Poverty and inequality in European regions. Journal of Applied Statistics 39(7): 1557–1576.

  • MARCON E. PUECH F. (2003): Evaluating the geographic concentration of industries using distance-based methods. Journal of Economic Geography 3: 409–428.

  • MILLS J. A. ZANDVAKILI S. (1997): Statistical inference via bootstrapping for measures of inequality. Journal of Applied Econometrics 12(2): 133–150.

  • MUSSARD S. SEYTE F. TERRAZA M. (2003): Decomposition of Gini and the generalized entropy inequality measures. Economics Bulletin 4(7): 1–6.

  • NETRDOVÁ P. NOSEK V. (2009): Approaches to measuring the significance of geographical dimension of societal inequality. Geografie 114(1): 52–65.

  • NOSEK V. NETRDOVÁ P. (2010): Regional and spatial concentration of socio-economic phenomena: empirical evidence from the Czech Republic. Ekonomický časopis/Journal of Economics 58(4): 344–359.

  • NOSEK V. NETRDOVÁ P. (2014): Measuring Spatial Aspects of Variability. Comparing Spatial Autocorrelation with Regional Decomposition in International Unemployment Research. Historical Social Research 39(2): 292–314.

  • NOVOTNÝ J. NOSEK V. (2009): Nomothetic geography revisited: statistical distributions basic generative mechanisms and inequality measures. Geografie 114(4): 282–297.

  • NOVOTNÝ J. NOSEK V. (2012): Comparison of regional inequality in unemployment among four Central European countries: an inferential approach. Letters in Spatial and Resource Sciences 5(2): 95–101.

  • NOVOTNÝ J. NOSEK V. JELÍNEK K. (2014): EasyStat 1.0. Prague Faculty of Science Charles University. [cit. 19.05.2015]. Available at: https://web.natur.cuni.cz/~pepino/EasyStat.zip

  • OKAMOTO M. (2009): Decomposition of gini and multivariate gini indices. The Journal of Economic Inequality 7(2): 153–177.

  • OPENSHAW S. (1984): Concepts and Techniques in Modern Geography. Volume 37: The Modifiable Areal Unit Problem. Norwich Geo Books.

  • ORD J. K. GETIS A. (2012): Local spatial heteroscedasticity (LOSH). The Annals of Regional Science 48(2): 529–539.

  • REY S. J. (2004): Spatial analysis of regional income inequality. In: Goodchild M. Janelle D. [eds.]: Spatially Integrated Social Science: Examples in Best Practice 1 (pp. 280–299). Oxford Oxford University Press.

  • REY S. J. JANIKAS M. V. (2005): Regional convergence inequality and space. Journal of Economic Geography 5(2): 155–176.

  • REY S. J. MONTOURI B. D. (1999): US regional income convergence: a spatial econometric perspective. Regional Studies 33(2): 143–156.

  • REY S. J. SMITH R. J. (2013): A spatial decomposition of the Gini coefficient. Letters in Spatial and Resource Sciences 6(2): 55–70.

  • SEN A. (1972): On economic inequality. Oxford Claredon Press.

  • SHORROCKS A. WAN G. (2005): Spatial decomposition of inequality. Journal of Economic Geography 5(1): 59–81.

  • STINE R. (1989): An introduction to bootstrap methods: examples and ideas. Sociological Methods Research 18(2–3): 243–291.

  • STAKHOVYCH S. BIJMOLT T. H. A. (2009): Specification of spatial models: A simulation study on weights matrices. Papers in Regional Science 88(2): 389–408.

  • SUBRAMANIAN S. (2004): Indicators of inequality and poverty. Research Paper No. 2004/25 World Institute for Development Economics Research. [online]. [cit. 30.05.2013]. Available at: https://www.wider.unu.edu/sites/default/files/rp2004-025.pdf

  • SUN W. JONES B. (2013): Using multi-scale spatial and statistical analysis to assess the effects of brownfield redevelopment on surrounding residential property values in Milwaukee County USA. Moravian Geographical Reports 21(2): 56–64.

  • UNWIN A. UNWIN D. (1998): Exploratory spatial data analysis with local statistics. Journal of the Royal Statistical Society: Series D (The Statistician) 47(3): 415–421.

  • WONG D. (2009): The Modifiable Areal Unit Problem (MAUP). In: Fotheringham A. S. Rogerson P. A. [eds.]: The SAGE Handbook of Spatial Analysis (pp. 105–125). London SAGE.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 135 4
PDF Downloads 161 100 0