Smart tools of urban climate evaluation for smart spatial planning

Open access

Abstract

Air temperature and humidity conditions were monitored in Hradec Králové, Czech Republic, by a network of meteorological stations. Meteorological sensors were placed across a representative variety of urban and suburban environments. The data collected over the 2011–2014 period are analysed in this paper. The data from reference standard meteorological stations were used for comparison and modelling purposes. Air temperatures at the points of interest were successfully modelled using regression relationships. The spatial expression of point measurements of air temperatures was provided by GIS methods in combination with CORINE land cover layer, and satellite thermal images were used to evaluate the significance of these methods. The use of standard climate information has low priority for urban planners. The impact of the urban heat island on city residents and visitors was evaluated using the HUMIDEX index, as it is more understandable for urban planners than temperature conditions as such. The aim of this paper is the modification, description and presentation of urban climate evaluation methods that are easily useable for spatial planning purposes. These methods are based on comprehensible, easily available but quality data and results. This unified methodology forms a theoretical basis for better urban planning policies to mitigate the urban heat island effects.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ANIELLO C. MORGAN K. BUSBEY A. NEWLAND L. (1995): Mapping micro-urban heat islands using Landsat-TM and GIS. Computers and Geosciences 21(8): 965–969.

  • BAUM S. HORTON S. CHOY D. L. GLEESON B. (2009): Climate change health impacts and urban adaptability: Case study of Gold Coast City. Urban Research Program Research Monograph 11. Brisbane Griffith University.

  • BOKWA A. (2011): The urban heat island in Kraków Poland: interaction between land use and relief. Moravian Geographical Reports 19(3): 2–7.

  • BOKWA A. LIMANÓWKA D. (2014): Effect of relief and land use on heat stress in Kraków Poland. Die Erde 145(1–2): 34–48.

  • BOTTYÁN Z. UNGER J. (2003): A multiple linear statistical model for estimating the mean maximum urban heat island. Theoretical and Applied Climatology 75: 233–243.

  • d’AMBROSIO ALFANO F. R. PALELLA B. I. RICCIO G. (2011): Thermal Environment Assessment Reliability Using Temperature – Humidity Indices. Industrial Health 49: 95–106.

  • DESSAI S. (2002): Heat stress and mortality in Lisbon Part I. model construction and validation. International Journal of Biometeorology 7(1): 6–12.

  • ELLEFSEN R. (1991): Mapping and measuring buildings in the canopy boundary layer in the U.S. cities. Energy and Buildings 15–16(3–4): 1025–1049.

  • EKŞI M. UZUN A. (2013): Investigation of thermal benefits of an extensive green roof in Istanbul climate. Scientific research and essays 8(15): 623–632.

  • DOBROVOLNÝ P. (2013): The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology 112(1–2): 89–98.

  • FORTUNIAK K. KŁYSIK K. WIBIG J. (2006): Urban-rural contrasts of meteorological parameters in Łodź. Theoretical and Applied Climatology 84: 91–101.

  • FRICH P. ALEXANDER L. DELLA-MARTA P. GLEASON B. HAYLOCK M. KLEIN TANK A. PETERSON T. (2002): Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19: 193–212.

  • GELETIČ J. VYSOUDIL M. (2012): Analysis of surface temperatures in urban and suburban landscapes from satellite thermal images: a case study of Olomouc and its environs Czech Republic. Moravian Geographical Reports 20(1): 2–15.

  • GHANGHERMEH A. ROSHAN G. OROSA J. A. CALVOROLLE J. L. COSTA A. M. (2013): New Climatic Indicators for Improving Urban Sprawl: A Case Study of Tehran City. Entropy 15: 999–1013.

  • HEYMANN Y. STEENMANS C. CROISILLE G. BOSSARD M. (1994): CORINE land cover technical guide. Office for Official Publications of the European Communities Luxembourg.

  • HUANG Y. J. AKBARI H. TAHA H. ROSENFELD A. H. (1987): The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Climate and Applied Meteorology 26: 1103–1116.

  • IVAJNŠIČ D. KALIGARIČ M. ŽIBERNA I. (2014): Geographically weighted regression of the urban heat island of a small city. Applied Geography 53: 341–353.

  • JENDRITZKY G. (1988): Bioklima. VDI Kommission Reinhaltung der Luft ed. Stadtklima und Luftreinhaltung. Springer Verlag Berlin.

  • JENDRITZKY G. GRÄTZ A. KOPPE C. LASCHEWSKI G. (2003): How to deal with the urban development urban climate human health effect relationship – a contribution to methodology. Proceedings Fifth International Conference on Urban Climate (p. 47–50) Lodz Poland.

  • JENDRITZKY G. NÜBLER W. (1981): A model analysing the urban thermal environment in physiologically significant terms. Archives for meteorology geophysics and bioclimatology Series B 29(4): 313–326.

  • KARL T. KNIGHT R. (1997): The 1995 Chicago heat wave: How likely is a recurrence? Bulletin of American Meteorological Society 78(6): 1107–1119.

  • KOPPE C. KOVATS S. JENDRITZKY G. MENNE B. (2004): Heat-waves: risks and responses. Health and Global Environmental Change Series No. 2 Europe World Health Organization.

  • KYSELÝ J. KALVOVÁ J. KVĚTOŇ V. (2000): Heat waves in the South Moravian region during the period 1961–1995. Studia Geophysica et Geodaetica 44(1): 57–72.

  • LAMBIN E. F. GEIST H. J. (2006): Land-use and Land-cover change. Local processes and global impacts. Berlin Springer–Verlag.

  • LANDSBERG E. H. (1981): The urban climate. International geophysics series Vol. 28. New York Academic press.

  • LEHNERT M. (2013): The soil temperature régime in the urban and suburban landscapes of Olomouc Czech Republic. Moravian Geographical Reports 21(3): 27–36.

  • LEHNERT M. GELETIČ J. HUSÁK J. VYSOUDIL M. (2014): Urban field classification by “local climate zones” in a medium-sized Central European city: the case of Olomouc (Czech Republic). Theoretical and Applied Climatology DOI 10.1007/s00704-014-1309-6 (in print).

  • LITSCHMANN T. HADAŠ P. (2003): Mikroklima vybraných porostních stanovišť. In: Rožnovský J. Litschmann T. [ed.]: Seminář „ Mikroklima porostů“ Brno 26. března 2003 (p. 59–65) Brno ČBkS.

  • MALLICK J. KANT Y. BHARATH B. D. (2008): Estimation of land surface temperature over Delhi using Landsat-7 ETM+. Journal of Indian Geophysical Union 12(3): 131–140.

  • MANIK T. K. SYAUKAT S. (2015): The impact of urban heat islands. Assessing vulnerability in Indonesia. Asian Cities Climate Resilience Working Paper Series No. 13. London IIED.

  • MAYER H. (1996): Human-biometeorologische Probleme des Stadtklimas. Geowissenschaften 14(6): 233–239.

  • OKE T. R. (1997): Part 4: The changing climatic environments. Urban climates and global environmental change. In: Thompson R. D. and Perry A. [eds.]: Applied climatology principles and practice (pp. 273–287). Routledge London.

  • OKE T. R. (1982): The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1–24.

  • OKE T. R. (2006): Initial guidance to obtain representative meteorological observations at urban sites. Instruments and Observing Methods Report No. 81. Geneva WMO.

  • PAPRITZ A. STEIN A. (2002): Spatial prediction by linear kriging. Spatial Statistics for Remote Sensing. Remote Sensing and Digital Image Processing 1: 83–113.

  • POKLADNÍKOVÁ H. FUKALOVÁ P. ROŽNOVSKÝ J. STŘEDA T. (2009): Specifics of temperature extremes in the conditions of the urban climate. In: Pribullová A. Bičárová S. [eds.]: Sustainable development and bioclimate (pp. 217–218). Stará Lesná: Geophysical Institute of the SAS and SBkS.

  • SCHÄR C. VIDALE P. L. LÜTHI D. FREI C. HÄBERLI C. LINIGER M. A. APPENZELLER C. (2004): The role of increasing temperature variability in European summer heat waves. Nature 427: 332–336.

  • SMARGIASSI A. GOLDBERG M. S. PLANTE C. FOURNIER M. BAUDOUIN Y. KOSATSKY T. (2009): Variation of daily warm season mortality as a function of micro-urban heat islands. Journal of Epidemiology and Community Health 63(8): 659–664.

  • SOUCH C. GRIMMOND S. (2006): Applied climatology: Urban climate. Progress in Physical Geography 30(2): 270–279.

  • SRIVANIT M. (2013): Integrated urban thermal environment assessment methods for multi-scale spatial planning. Ph.D. thesis. Department of Science and Advanced Technology Graduate School of Science and Engineering. Saga University Japan.

  • SRIVANIT M HOKAO K. (2013): Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment 66: 158–172.

  • STATHOPOULOU M. CARTALIS C. KERAMITSOGLOU I. (2004): Mapping micro-urban heat islands using NOAA/AVHRR images and CORINE Land Cover: an application to coastal cities of Greece. International Journal of Remote Sensing 25(12): 2301–2316.

  • STEWART I. D. (2011): A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology 31: 200–217.

  • STEWART I. D. OKE T. R. (2012): Local climate zones for urban temperature studies. Bulletin of American Meteorological Society 93(12): 1879–1900.

  • STŘEDA T. STŘEDOVÁ H. ROŽNOVSKÝ J. (2011): Microclimate of tourist attractive areas of Brno City. In: Fialová J. Pernicová D. [eds.]: Public Recreation and Landscape Protection – Hand in Hand? Conference proceedings (pp. 78–84). Brno Mendel University in Brno.

  • STŘEDA T. STŘEDOVÁ H. ŠEDIVÁ I. (2014): Bioclimatic conditions for the recreationally important areas in the medium sized city. In: Fialová J. Pernicová D. [eds.]: Public Recreation and Landscape Protection – Hand in Hand? Conference proceedings (pp. 47–51). Brno Mendel University in Brno.

  • SZŰCS Á. (2013): Wind comfort in a public urban space – Case study within Dublin Docklands. Frontiers of Architectural Research 2: 50–66.

  • TAN J. ZHENG Y. SONG G. KALKSTEIN L. S. KALKSTEIN A. J. TANG X. (2007): Heat wave impacts on mortality in Shanghai 1998 and 2003. International Journal of Biometeorology 51(3): 193–200.

  • VAN WEVERBERG K. DE RIDDER K. VAN ROMPAEY A. (2008): Modeling the contribution of the Brussels heat island to a long temperature time series. Journal of Applied Meteorology and Climatology 47: 976–990.

  • VOOGT J. A. (2002): Urban heat island. In: Douglas I. [ed.]: Encyclopedia of global environmental change Volume 3 Causes and consequences of global environmental change (pp. 660–666). Wiley.

  • VOOGT J. A. OKE T. R. (2003): Thermal remote sensing of urban climates. Remote Sensing of the Environment Vol. 86 p. 370–384.

  • VYSOUDIL M. LÉTAL A. PAVELKOVÁ R. (2009): Thermal monitoring: Identification tool of natural disasters risks response to local climatic effects. In: Proceedings 33rd International Symposium on Remote Sensing of Environment ISRSE 2009 (pp. 571–574) Code 97459. Stresa; Italy.

  • VYSOUDIL M. OGRIN D. (2009): Portable infrared camera as a tool in topoclimatic research. Dela 31: 115–127.

  • WENG Q. LU D. SCHUBRING J. (2004): Estimation of land surface temperature – vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89: 467–483.

  • WHO (2013): Annual report 2013. WHO Centre for Health Development Kobe Japan.

  • ZHANG K. OSWALD E. M. BROWN D. G. BRINES S. J. GRONLUND C. J. WHITE-NEWSOME J. L. ROOD R. B. O’NEILL M. S. (2011): Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environmental Research 111: 1046–1053.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 113 6
PDF Downloads 171 103 4