A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils

Open access

Abstract

The climate of Central Europe, mainly winter seasons with no snow cover at lower altitudes and a spring drought as well, might cause erosion events on heavy-textured soils. The aim of this paper is to define a universal method to identify the potential risk of wind erosion on heavy-textured soils. The categorization of potential wind erosion risk due to meteorological conditions is based on: (i) an evaluation of the number of freeze-thaw episodes forming bare soil surfaces during the cold period of year; and (ii), an evaluation of the number of days with wet soil surfaces during the cold period of year. In the period 2001–2012 (from November to March), episodes with temperature changes from positive to negative and vice versa (thaw-freeze and freeze-thaw cycles) and the effects of wet soil surfaces in connection with aggregate disintegration, are identified. The data are spatially interpolated by GIS tools for areas in the Czech Republic with heavy-textured soils. Blending critical categories is used to locate potential risks. The level of risk is divided into six classes. Those areas identified as potentially most vulnerable are the same localities where the highest number of erosive episodes on heavy-textured soils was documented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AMÉZKETA E. ARAGÜÉS R. CARRANZA R. URGEL B. (2003): Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research 1: 83–94.

  • ANDERSON C. H. WENHARDT A. (1966): Soil erodibility fall and spring. Canadian Journal of Soil Science 46(3): 255–259.

  • BECHMANN M. E. KLEINMAN P. J. SHARPLEY A. N. SAPORITO L. S. (2005): Freeze–thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. Journal of Environmental Quality 34(6): 2301–2309.

  • BENOIT G. R. (1973): Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes. Soil Science Society of America Proceedings 37(1): 3–5.

  • BIELEK P. ČURLÍK J. FULAJTÁR E. HOUŠKOVÁ B. ILAVSKÁ B. KOBZA J. (2005): Soil survey and managing of soil data in Slovakia. In: Soil resources of Europe second edition. Research report No. 9 (pp. 317–329). The European Soil Bureau Ispra Italy.

  • BORELLI P. BALLABIO C. PANAGOS P. MONTANARELLA L. (2014): Wind erosion susceptibility of European soils. Geoderma 232–234: 471–478.

  • BORŮVKA L. VALLA M. DONÁTOVÁ H. NĚMEČEK K. (2002): Vulnerability of soil aggregates in relation to soil properties. Rostlinná Výroba 48(8): 329–334.

  • BRAVO-GARZA M. R. BRYAN R. B. VORONEY P. (2009): Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma 151(3–4): 150–156.

  • BULLOCK M. S. LARNEY F. J. IZAURRALDE R. C. FENG Y. (2001): Overwinter changes in wind erodibility of clay loam soils in southern Alberta. Soil Science Society of America Journal 65(2): 423–430.

  • BULLOCK M. S. LARNEY F. J. McGINN S. M. IZAURRALDE R. C. (1999): Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta. Canadian Journal of Soil Science 79(1): 127–135.

  • CHEPIL W. S. (1951): Properties of soil which influence wind erosion: V. Mechanical stability of structure. Soil Science Vol. 72: 465–478.

  • CHEPIL W. S. (1952): Improved rotary sieve for measuring state and stability of dry soil structure. Soil Science Society of America Proceedings 16(2): 113–117.

  • CHEPIL W. S. (1953): Factors that influence clod structure and erodibility of soil by wind: I. Soil structure. Soil Science 75: 473–483.

  • CHEPIL W. S. (1954): Seasonal fluctuations in soil structure and erodibility of soil by wind. Soil Science Society of America Proceedings 18(1): 13–16.

  • CHEPIL W. S. (1958): Soil conditions that influence wind erosion. Technical Bulletin No. 1185. Washington D.C. USA United States Department of Agriculture.

  • COLAZO J. C. BUSCHIAZZO D. E. (2010): Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 159(1–2): 228 236.

  • DAGESSE D. F. (2013): Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science 93(4):473–483.

  • DeLUCA T. H. KEENEY D. R. McCARTY G. W. (1992): Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils 14(2): 116–120.

  • DIAZ-ZORITA M. GROVE J. H. PERFECT E. (2002): Aggregation fragmentation and structural stability measurement. In: Encyclopedia of Soil Science (pp. 37–40). Marcel Dekker Inc. New York USA.

  • EDWARDS L. M. (2013): The effects of soil freeze–thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review. Canadian Journal of Soil Science 93(4): 459–472.

  • FAN Y. LIU J. CAI Q. (2008): The effects of wetting rate on aggregate stability in three soils. In: 15th ISCO Congress “Soil and Water Conservation Climate Change and Environmental Sensitivity” 18–23 May 2008 Budapest (p. 4). Geographical Research Institute Hungarian Academy of Science Budapest Hungary.

  • GROGAN P. MICHELSEN A. AMBUS P. JONASSON S. (2004): Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry 36: 641–654.

  • HACHEM S. DUGUAY C. R. ALLARD M. (2012): Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere 6: 51–69.

  • HAGEN L. J. SKIDMORE E. L. LAYTON J. B. (1988): Wind erosion abrasion: effects of aggregate moisture. Transactions of the ASAE 31(3): 725–728.

  • HARTMANN R. DE BOODT M. (1974): The influence of the moisture content texture and organic matter on the aggregation of sandy and loamy soils. Geoderma 11(1): 53–62.

  • HERSHFIELD D. M. (1974): The frequency of freeze-thaw cycles. Journal of Applied Meteorology 13: 348–354.

  • HINMAN W. C. BISAL F. (1968): Alterations of soil structure upon freezing and thawing and subsequent drying. Canadian Journal of Soil Science 48(2): 193–197.

  • IUSS Working Group WRB (2006): World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO Rome Italy.

  • KEMPER W. D. ROSENAU R. C. (1986): Aggregate stability and size distribution. In: Methods of Soil Analysis Part 1. Physical and Mineralogical Methods (pp. 425–444). American Society of Agronomy Madison USA.

  • KONG B. YU H. (2013): Estimation model of soil freeze-thaw erosion in Silingco Watershed Wetland of Northern Tibet. The Scientific World Journal ID 636521.

  • KVÆRNØ S. H. ØYGARDEN L. (2006): The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 67(3): 175–182.

  • LEHRSCH G. A. (1998): Freeze/thaw cycles increase near-surface aggregate stability. Soil Science 163(1): 63–70.

  • LEHRSCH G. A. SOJKA R. E. CARTER D. L. JOLLEY P. M. (1991): Freezing effects on aggregate stability affected by texture mineralogy and organic matter. Soil Science Society of America Journal 55(5): 1401–1406.

  • LOGSDAIL D. E. WEBBER L. R. (1959): Effect of frost action on structure of Haldimand clay. Canadian Journal of Soil Science 39(2): 103–106.

  • MELICK D. R. SEPPELT R. D. (1992): Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science 4(4): 399–404.

  • MURRAY R. S. GRANT C. D. (2007): The impact of irrigation on soil structure. The National Program for Sustainable Irrigation (Land and Water Australia) Canberra Australia.

  • MUŽÍKOVÁ B. STŘEDA T. PODHRÁZSKÁ J. TOMAN F. (2010): Meteorological conditions during extreme wind erosion events on heavy soils. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 58(1): 115–122.

  • MUŽÍKOVÁ B. STŘEDA T. STŘEDOVÁ H. (2013): State of bare soil surface as a spring drought indicator. Contributions to Geophysics and Geodesy 43(3): 197–207.

  • NIMMO J. R. (2005): Aggregation: Physical Aspects. In: Encyclopedia of Soils in the Environment (pp. 28–35). London Academic Press.

  • OZTAS T. FAYETORBAY F. (2003): Effect of freezing and thawing processes on soil aggregate stability. Catena 52(1): 1–8.

  • PODHRÁZSKÁ J. KUČERA J. CHUCHMA F. STŘEDA T. STŘEDOVÁ H. (2013): Effect of changes in some climatic factors on wind erosion risks – the case study of South Moravia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61(6): 1829–1837.

  • POKLADNÍKOVÁ H. TOMAN F. STŘEDA T. (2008): Negative impacts of snowmelting on the soil. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 56(1):143–148.

  • SINGER M. J. SHAINBERG I. (2004): Mineral soil surface crusts and wind and water erosion. Earth Surface Processes and Landforms 29(9): 1065–1075.

  • SJURSEN H. MICHELSEN A. HOLMSTRUP M. (2005): Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology 28(1): 79–93.

  • SKIDMORE E. L. POWERS D. H. (1982): Dry soil-aggregate stability: energy-based index. Soil Science Society of America Journal 46: 1274–1279.

  • SLABÁ N. (1972): Návod pro pozorovatele meteorologických stanic ČSSR. 2. přepracované vydání. Sborníky předpisů Hydrometeorologického ústavu v Praze Svazek 7. Praha: Hydrometeorologický ústav.

  • SPÁČILOVÁ B. STŘEDA T. THONNOVÁ P. (2014): Spatial expression of potential wind erosion threats to arable soils in the Czech Republic. Contributions to Geophysics and Geodesy 44(3): 241–252.

  • STŘEDOVÁ H. CHUCHMA F. STŘEDA T. (2011): Climatic factors of soil estimated system. Bioclimate: Source and limit of social development (pp. 137–138). Topolčianky Slovakia.

  • ŠVEHLÍK R. (1985): Větrná eroze půdy na jihovýchodní Moravě. Zabraňujeme škodám. Praha SZN.

  • TATARKO J. WAGNER L. E. BOYCE C. A. (2001): Effects of overwinter processes on stability of dry soil aggregates. In: Soil Erosion Research for the 21st Century (pp. 459–462). Honolulu ASABE.

  • VOPRAVIL J. [ed.] (2011): Půda a její hodnocení v ČR díl II. Praha VÚMOP v.v.i.

  • VOPRAVIL J. JANEČEK M. TIPPL M. (2007): Revised soil erodibility K-factor for soils in the Czech Republic. Soil and Water Research 2(1): 1–9.

  • WANG E. CRUSE R. M. CHEN X. DAIGH A. (2012): Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science 92(3): 529–536.

  • WMO (2008): Guide to meteorological instruments and methods of observation. WMO No. 8. World Meteorological Organization Geneva.

  • XIUQING Z. FLERCHINGER G. (2001): Infiltration into freezing and thawing soils under differing field treatments. Journal of Irrigation and Drainage Engineering 127(3): 176–182.

  • YODER R. E. (1936): A direct method of aggregate analysis and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy 28: 337–351.

  • ZHOU Y. GUO B. WANG S. TAO H. (2015): An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing. Journal of Arid Land 7(3): 304–317.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 306 140 6
PDF Downloads 79 50 3