The distribution of selected CORINE land cover classes in different natural landscapes in Slovakia: Methodological framework and applications

Open access

Abstract

The distribution of selected CORINE land cover classes in different physical conditions was subject to modelling, analysis and evaluation in this article. In three regions with different geo-relief, the occurrence of land cover classes was analysed by using determinants commonly used in land-use models. Using three different modelling frameworks, the importance of methodological design in land-cover modelling was demonstrated. High levels of explanatory power for the factors defined here were found in landscapes of high heterogeneity. Findings derived from the statistical models highlight the importance of landscape disaggregation by natural conditions in complex land-cover or land-use models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AHLQVIST O. (2008): Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 U.S. National Land Cover Database changes. Remote Sensing of Environment 112(3): 1226–1241.

  • ATKINSON P. (2004): Spatially weighted supervised classification for remote sensing. International Journal of Applied Earth Observation and Geoinformation 5(4): 277–291.

  • ATKINSON P. M. MASSARI R. (2011): Autologistic modelling of susceptibility to landsliding in the Central Apennines Italy. Geomorphology 130(1–2): 55–64.

  • BALEJ M. ANDĚL J. (2011): The role of region delimitation in a study of land cover changes: case study from the Czech Republic after 1990. Moravian Geographical Reports 19(2): 2–17.

  • BOGAERT P. (2002): Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stochastic Environmental Research and Risk Assessment 16(6): 425–448.

  • BOSSARD M. FERANEC J. OTAHEL J. (2000): CORINE land cover technical guide–Addendum 2000. Technical report 40. Copenhagen European Environment Agency.

  • BRAIMOH A. ONISHI T. (2007): Geostatistical techniques for incorporating spatial correlation into land use change models. International Journal of Applied Earth Observation and Geoinformation 9(4): 438–446.

  • BROWN D. G. GOOVAERTS P. BURNICKI A. LI M. Y. (2002): Stochastic simulation of land-cover change using geostatistics and generalized additive models. Photogrammetric Engineering and Remote Sensing 68(10): 1051–1061.

  • BRUNSDON C. FOTHERINGHAM A. S. CHARLTON M. E. (2010): Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis 28(4): 281–298.

  • CASSIDY L. BINFORD M. SOUTHWORTH J. BARNES G. (2010): Social and ecological factors and land-use land-cover diversity in two provinces in Southeast Asia. Journal of Land Use Science 5(4): 277–306.

  • CHENG J. MASSER I. (2003): Modelling urban growth patterns: a multiscale perspective. Environment and Planning A 35(4): 679–704.

  • DEMEK J. MACKOVČIN P. SLAVÍK P. (2012): Spatial and temporal trends in land-use changes of Central European landscapes in the last 170 years: a case study from the south-eastern part of the Czech Republic. Moravian Geographical Reports 20(3): 2–21.

  • DENDONCKER N. ROUNSEVELL M. BOGAERT P. (2007): Spatial analysis and modelling of land use distributions in Belgium. Computers Environment and Urban Systems 31: 188–205.

  • EASTMAN J. R. VAN FOSSEN M. E. SOLORZANO L. A. (2005): Transition Potential Modelling for Land Cover Change. In: Maguire D. Batty M. Goodchild M. [eds.]: GIS Spatial Analysis and Modelling (pp. 357–385). California ESRI Press.

  • EEA (2007): CLC 2006 technical guidelines – European Environment Agency Copenhagen.

  • ESRI (2012). ArcGIS desktop: Release 10.1. Redlands CA: Environmental Systems Research Institute.

  • FERANEC J. NOVÁČEK J. (2009): The role of region delimitation in a study of land cover changes: case study from the Czech Republic after 1990. Moravian Geographical Reports 17(3): 2–9.

  • FERANEC J. SOLÍN L. KOPECKÁ M. OŤAHEĽ J. KUPKOVÁ L. ŠTYCH P. BIČÍK I. KOLAŘ J. ČERBA O. SOUKUP T. BRODSKÝ L. (2014): Analysis and expert assessment of the semantic similarity between land cover classes. Progress in Physical Geography 38(3): 301–327.

  • GALLEGO F. J. BATISTA F. ROCHA C. MUBAREKA S. (2011): Disaggregating population density of the European Union with CORINE land cover. International Journal of Geographical Information Science 25(12): 2051–2069.

  • GUISAN A. ZIMMERMANN N. E. (2000): Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186.

  • HAIBO D. ZHENGFANG W. MING L. SHENGWEI Z. XIANGJUN M. (2012): Quantitative division of vegetation ecotones in Northeast China. Applied Ecology and Environmental Research 10(3): 319–332.

  • HENGL T. (2004): A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2): 75–93.

  • HENGL T. (2006): Finding the right pixel size. Computers and Geosciences 32(9): 1283–1298.

  • HENGL T. HEUVELINK G. B. M. ROSSITER D. G. (2007): About regression-kriging: From equations to case studies. Computers and Geosciences 33(10): 1301–1315.

  • HEYMANN Y. STEENMANS C. CROISSILLE G. BOSSARD M. (1994): CORINE land cover. Technical guide. Luxembourg Office for Official Publications of the European Communities.

  • KEITT T. H. BJORNSTAD O. N. DIXON P. M. CITRON-POUSTY S. (2002): Accounting for spatial pattern when modelling organism-environment interactions. Ecography 25(5): 616–625.

  • KING G. (1986): How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science American Journal of Political Science 30: 666–687.

  • KOPECKÁ M. VATSEVA R. FERANEC J. OŤAHEĽ J. STOIMENOV A. NOVÁČEK J. DIMITROV V. (2012): Selected changes of arable land in Slovakia and Bulgaria during the period 1990–2006. Moravian Geographical Reports 20(1): 43–54.

  • KOPECKÁ M. VATSEVA R. FERANEC J. OŤAHEĽ J. ROSINA K. (2014): Urban land cover changes: case studies Trnava (Slovakia) and Burgas (Bulgaria). In: Bičík et al. [eds.]: Land Use/Cover Changes in Selected Regions in the World (pp. 49–55). Volume IX. International Geographical Union Commission on Land Use/Cover Change. Prague Charles University in Prague Faculty of Science.

  • KUN Á. (2006): Generation of heterogeneous landscapes for models of population dynamics. Applied Ecology and Environmental Research 4: 73–84.

  • LIN Y. P. CHU H. J. WU C. F. VERBURG P. H. (2011): Predictive ability of logistic regression auto-logistic regression and neural network models in empirical land-use change modelling – a case study. International Journal of Geographical Information Science 25(1): 65–87.

  • MCDONALD R. URBAN D. (2006): Spatially varying rules of landscape change: lessons from a case study. Landscape and Urban Planning 74(1): 7–20.

  • MICHALKO J. BERTA J. MAGIC D. (1986): Geobotanická mapa ČSSR. Veda Bratislava.

  • MUNROE D. K. SOUTHWORTH J. TUCKER C. M. (2002): The dynamics of land-cover change in western Honduras: exploring spatial and temporal complexity. Agricultural Economics 27: 355–369.

  • MUNROE D. NAGENDRA H. SOUTHWORTH J. (2007): Monitoring landscape fragmentation in an inaccessible mountain area: Celaque National Park Western Honduras. Landscape and Urban Planning 83(2–3): 154–167.

  • OLOFSSON P. FOODY G. M. HEROLD M. STEHMAN S. V. WOODCOCK C. E. WULDER M. A. (2014): Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment 148: 42–57.

  • ONDOŠ S. (2010): Bunkový model súčasnej urbánnej morfogenézy na území Bratislavy Ph.D. thesis. Bratislava Comenius University.

  • OPRŠAL Z. ŠARAPATKA B. KLADIVO P. (2013): Land-use changes and their relationships to selected landscape parameters in three cadastral areas in Moravia (Czech Republic). Moravian Geographical Reports 21(1): 41–50.

  • O’SULLIVAN D. UNWIN D. J. (2010): Geographic Information Analysis. Hoboken. John Wiley & Sons New York.

  • OTT R. L. LONGNECKER M. T. (2010): An Introduction to Statistical Methods and Data Analysis. Duxbury Press 6th edition.

  • OŤAHEĽ. J. FERANEC J. CEBECAUER T. PRAVDA J. HUSÁR K. (2004): The landscape structure of the district of Skalica: assessment of changes diversity and stability. Geographia Slovaca 19 Bratislava Institute of Geography.

  • OVERMARS K. P. DE KONING G. H. J. VELDKAMP A. (2003): Spatial autocorrelation in multi-scale land use models. Ecological Modelling 164(2–3): 257–270.

  • PAZÚR R. OŤAHEĽ J. MARETTA M. (2012): Analýza priestorovej heterogenity tried krajinnej pokrývky v odlišných prírodných podmienkach. Geografie 117(4): 371–394.

  • PAZÚR R. LIESKOVSKÝ J. FERANEC J. OŤAHEĽ J. (2014): Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Applied Geography 54: 118–128.

  • PAZÚR R. (in review): Capturing the effective cell size in vector-to-raster conversion: methodological framework and its application on CORINE land cover dataset. Transactions in GIS.

  • PIJANOWSKI B. PITHADIA S. SHELLITO B. ALEXANDRIDIS K. (2005): Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science 19(2): 197–215.

  • R Core Team (2013). R: A language and environment for statistical computing. Vienna Austria: R Foundation for Statistical Computing. [online] [cit. 19.04.2014]. Available at: http://www.R-project.org/

  • SANGERMANO F. TOLEDANO J. EASTMAN J. R. (2012): Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology 27(4): 571–584.

  • SHORTRIDGE A. (2007): Practical limits of Moran’s autocorrelation index for raster class maps. Computers Environment and Urban Systems 31(3): 362–371.

  • ŠUŠKA P. (2012): Produkcia vybudovaného prostredia v postsocialistickej Bratislave: podmienky dynamika a územný prejav. Geografický časopis 64(2): 155–179.

  • ŠVEDA M. KRIŽAN F. (2012): Prejavy komerčnej suburbanizácie vo vybraných odvetviach hospodárstva v zázemí Bratislavy. Ekonomický časopis 60(5): 460–481.

  • UUEMAA E. ROOSAARE J. KANAL A. MANDER Ü. (2008): Spatial correlograms of soil cover as an indicator of landscape heterogeneity. Ecological Indicators 8(6): 783–794.

  • VERBURG P. DENIJS T. RITSEMAVANECK J. VISSER H. DEJONG K. (2004a): A method to analyse neighbourhood characteristics of land use patterns. Computers Environment and Urban Systems 28(6): 667–690.

  • VERBURG P. H. ECK J. R. R. V. NIJS T. C. M. D. DIJST M. J. SCHOT P. (2004b): Determinants of land-use change patterns in the Netherlands. Environment and Planning B: Planning and Design 31(1): 125–150.

  • VERBURG P. H. VELDKAMP A. (2005): Introduction to the Special Issue on Spatial modelling to explore land use dynamics. International Journal of Geographical Information Science 19(2): 99–102.

  • VIGAŠOVÁ D. PAPAJOVÁ-MAJESKÁ Ľ. KRÍŽOVÁ L. ŠVEDA M. (2010): Land use changes in the suburban zones of Banská Bystrica and Zvolen (Slovakia). Moravian Geographical Reports 18(3): 43–52.

  • VON THÜNEN J. H. (1966): Von Thünen’s Isolated State Pergamon Press Oxford UK (P. Hall [ed.] trans.: originally published as Der Isolierte Staat in Beziehung der Landwirtschaft und National ökonomie Wissenschaftliche Buchgesellschaft 1875 Darmstadt).

  • WU F. (2002): Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science 16(8): 795–818.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.870
5-year IMPACT FACTOR: 1.858

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.445
Source Normalized Impact per Paper (SNIP) 2018: 0.877

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 108 1
PDF Downloads 98 73 0