Glioendocrine System: Effects of Thyroid Hormones in Glia and their Functions in the Central Nervous System

Mami Noda 1
  • 1 Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Abstract

Glial cells play a significant role in the link between the endocrine and nervous systems. Among hormones, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and glial cells, and hence for development and function of the central nervous system (CNS). THs are transported into the CNS, metabolized in astrocytes and affect various cell types in the CNS including astrocyte itself. Since 3,3’,5-triiodo-L-thyronine (T3) is apparently released from astrocytes in the CNS, it is a typical example of glia-endocrine system.

The prevalence of thyroid disorders increases with age. Both hypothyroidism and hyperthyroidism are reported to increase the risk of cognitive impairment or Alzheimer’s disease (AD). Therefore, understanding the neuroglial effects of THs may help to solve the problem why hypothyroidism or hyperthyroidism may cause mental disorders or become a risk factor for cognitive impairment. In this review, THs are focused among wide variety of hormones related to brain function, and recent advancement in glioendocrine system is described.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Garcia-Segura LM, Chowen JA, Naftolin F. Endocrine glia: roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol. 1996;17(2):180–211. https://doi.org/10.1006/frne.1996.0005

  • 2. Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev. 2004;45(1):38–78. https://doi.org/10.1016/j.brainresrev.2004.02.002

  • 3. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer’s Disease Biomarkers: A Pilot Clinical Trial. J Alzheimers Dis. 2017;57(4):1325–34. https://doi.org/10.3233/JAD-161256

  • 4. Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M, et al. Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer’s disease. J Alzheimers Dis. 2010;22(2):405–13. https://doi.org/10.3233/JAD-2010-100795

  • 5. Morita M, Ikeshima-Kataoka H, Kreft M, Vardjan N, Zorec R, Noda M. Metabolic Plasticity of Astrocytes and Aging of the Brain. Int J Mol Sci. 2019;20(4). https://doi.org/10.3390/ijms20040941

  • 6. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long Acting Intranasal Insulin Detemir Improves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer’s Disease Dementia. J Alzheimers Dis. 2015;45(4):1269–70. https://doi.org/10.3233/JAD-159002

  • 7. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897–906. https://doi.org/10.3233/JAD-141791

  • 8. Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, et al. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging. J Gerontol A Biol Sci Med Sci. 2016;71(1):30–9. https://doi.org/10.1093/gerona/glu314

  • 9. Brabazon F, Wilson CM, Jaiswal S, Reed J, Frey WHN, Byrnes KR. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(9):3203–18. https://doi.org/10.1177/0271678X16685106

  • 10. Brabazon F, Bermudez S, Shaughness M, Khayrullina G, Byrnes KR. The effects of insulin on the inflammatory activity of BV2 microglia. PloS one. 2018;13(8):e0201878. https://doi.org/10.1371/journal.pone.0201878

  • 11. Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation. 2016;13(1):77. https://doi.org/10.1186/s12974-016-0541-7

  • 12. Mairesse J, Zinni M, Pansiot J, Hassan-Abdi R, Demene C, Colella M, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia. 2019;67(2):345–59. https://doi.org/10.1002/glia.23546

  • 13. Kato TA, Hayakawa K, Monji A, Kanba S. Missing and Possible Link between Neuroendocrine Factors, Neuropsychiatric Disorders, and Microglia. Front Integr Neurosci. 2013;7:53. https://doi.org/10.3389/fnint.2013.00053

  • 14. Baxi EG, Schott JT, Fairchild AN, Kirby LA, Karani R, Uapinyoying P, et al. A selective thyroid hormone beta receptor agonist enhances human and rodent oligodendrocyte differentiation. Glia. 2014;62(9):1513–29. https://doi.org/10.1002/glia.22697

  • 15. Dezonne RS, Stipursky J, Gomes FC. Effect of thyroid hormone depletion on cultured murine cerebral cortex astrocytes. Neurosci Lett. 2009;467(2):58–62. https://doi.org/10.1016/j.neulet.2009.10.001

  • 16. Jones SA, Jolson DM, Cuta KK, Mariash CN, Anderson GW. Triiodothyronine is a survival factor for developing oligodendrocytes. Mol Cell Endocrinol. 2003;199(1-2):49–60.

  • 17. Manzano J, Bernal J, Morte B. Influence of thyroid hormones on maturation of rat cerebellar astrocytes. Int J Dev Neurosci. 2007;25(3):171–9. https://doi.org/10.1016/j.ijdevneu.2007.01.003

  • 18. Martinez-Galan JR, Escobar del Rey F, Morreale de Escobar G, Santacana M, Ruiz-Marcos A. Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neo-cortex of the rat. Brain Res Dev Brain Res. 2004;153(1):109–14. https://doi.org/10.1016/j.devbrainres.2004.08.002

  • 19. Martinez-Galan JR, Pedraza P, Santacana M, Escobar del Rey F, Morreale de Escobar G, Ruiz-Marcos A. Myelin basic protein immunoreactivity in the internal capsule of neonates from rats on a low iodine intake or on methylmercaptoimidazole (MMI). Brain Res Dev Brain Res. 1997;101(1–2):249–56.

  • 20. Schoonover CM, Seibel MM, Jolson DM, Stack MJ, Rahman RJ, Jones SA, et al. Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology. 2004;145(11):5013–20. https://doi.org/10.1210/en.2004-0065

  • 21. Stenzel D, Huttner WB. Role of maternal thyroid hormones in the developing neocortex and during human evolution. Front Neuroanat. 2013;7:19. https://doi.org/10.3389/fnana.2013.00019

  • 22. Ferreira AA, Pereira MJ, Manhaes AC, Barradas PC. Ultrastructural identification of oligodendrocyte/myelin proteins in corpus callosum of hypothyroid animals. Int J Dev Neurosci. 2007;25(2):87–94. https://doi.org/10.1016/j.ijdevneu.2006.12.007

  • 23. Sharlin DS, Tighe D, Gilbert ME, Zoeller RT. The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine. Endocrinology. 2008;149(5):2527–36. https://doi.org/10.1210/en.2007-1431

  • 24. Lima FR, Gervais A, Colin C, Izembart M, Neto VM, Mallat M. Regulation of microglial development: a novel role for thyroid hormone. J Neurosci. 2001;21(6):2028–38.

  • 25. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. JBC. 2003;278(44):43489–95. JBC. https://doi.org/10.1074/jbc.M306933200

  • 26. Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology. 2004;145(9):4384–91. https://doi.org/10.1210/en.2004-0058

  • 27. Dezonne RS, Lima FR, Trentin AG, Gomes FC. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol. 2015;27(6):435–45. https://doi.org/10.1111/jne.12283

  • 28. Huber RD, Gao B, Sidler Pfandler MA, Zhang-Fu W, Leuthold S, Hagenbuch B, Folkers G, Meier PJ, Stieger B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol. 2007;292(2):C795-806. https://doi.org/10.1152/ajpcell.00597.2005

  • 29. Hagenbuch B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab. 2007;21(2):209–21. https://doi.org/10.1016/j.beem.2007.03.004

  • 30. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. JBC. 2005;280(10):9610–7. https://doi.org/10.1074/jbc.M411092200

  • 31. Taylor PM, Ritchie JW. Tissue uptake of thyroid hormone by amino acid transporters. Best Pract Res Clin Endocrinol Metab. 2007;21(2):237–51. https://doi.org/10.1016/j.beem.2007.03.002

  • 32. Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology. 2008;149(12):6251–61. https://doi.org/10.1210/en.2008-0378

  • 33. Bernal J, Guadano-Ferraz A, Morte B. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17. https://doi.org/10.1038/nrendo.2015.66

  • 34. Lopez-Espindola D, Garcia-Aldea A, Gomez de la Riva I, Rodriguez-Garcia AM, Salvatore D, Visser TJ, et al. Thyroid hormone availability in the human fetal brain: novel entry pathways and role of radial glia. Brain Struct Funct. 2019;224(6):2103–19. https://doi.org/10.1007/s00429-019-01896-8

  • 35. Di Liegro I. Thyroid hormones and the central nervous system of mammals (Review). Mol Med Rep. 2008;1(3):279–95.

  • 36. Fliers E, Alkemade A, Wiersinga WM, Swaab DF. Hypothalamic thyroid hormone feedback in health and disease. Prog Brain Res. 2006;153:189–207. https://doi.org/10.1016/S0079-6123(06)53011-0

  • 37. Guadano-Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(19):10391–6.

  • 38. Blondeau JP, Beslin A, Chantoux F, Francon J. Triiodothyro-nine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem. 1993;60(4):1407–13.

  • 39. Francon J, Chantoux F, Blondeau JP. Carrier-mediated transport of thyroid hormones into rat glial cells in primary culture. J Neurochem. 1989;53(5):1456–63.

  • 40. Freitas BC, Gereben B, Castillo M, Kallo I, Zeold A, Egri P, et al. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest. 2010;120(6):2206–17. https://doi.org/10.1172/JCI41977

  • 41. Begin ME, Langlois MF, Lorrain D, Cunnane SC. Thyroid Function and Cognition during Aging. Curr Gerontol Geriatr Res. 2008:474868. https://doi.org/10.1155/2008/474868

  • 42. Gesing A, Lewinski A, Karbownik-Lewinska M. The thyroid gland and the process of aging; what is new? Thyroid Res. 2012;5(1):16. https://doi.org/10.1186/1756-6614-5-16

  • 43. Chen Z, Liang X, Zhang C, Wang J, Chen G, Zhang H, et al. Correlation of thyroid dysfunction and cognitive impairments induced by subcortical ischemic vascular disease. Brain Behav. 2016;6(4):e00452. https://doi.org/10.1002/brb3.452

  • 44. Dugbartey AT. Neurocognitive aspects of hypothyroidism. Arch Intern Med. 1998;158(13):1413–8.

  • 45. Mallett P, Andrew M, Hunter C, Smith J, Richards C, Othman S, et al. Cognitive function, thyroid status and postpartum depression. Acta Psychiatr Scand. 1995;91(4):243–6.

  • 46. Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, et al. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med. 2008;168(14):1514–20. https://doi.org/10.1001/archinte.168.14.1514

  • 47. Mavroson MM, Patel N, Akker E. Myxedema Psychosis in a Patient With Undiagnosed Hashimoto Thyroiditis. J Am Osteopath Assoc. 2017;117(1):50–4. https://doi.org/10.7556/jaoa.2017.007

  • 48. Gesing A. The thyroid gland and the process of aging. Thyroid Res. 2015;8((Suppl 1)):A8.

  • 49. Buffenstein R, Pinto M. Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol. 2009;299(1):101–11. https://doi.org/10.1016/j.mce.2008.04.021

  • 50. Bowers J, Terrien J, Clerget-Froidevaux MS, Gothie JD, Rozing MP, Westendorp RG, et al. Thyroid hormone signaling and homeostasis during aging. Endocr Rev. 2013;34(4):556–89. Epub 2013/05/23. https://doi.org/10.1210/er.2012-1056

  • 51. Kalmijn S, Mehta KM, Pols HA, Hofman A, Drexhage HA, Breteler MM. Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol (Oxf). 2000;53(6):733–7.

  • 52. van Osch LA, Hogervorst E, Combrinck M, Smith AD. Low thyroid-stimulating hormone as an independent risk factor for Alzheimer disease. Neurology. 2004;62(11):1967–71.

  • 53. Wijsman LW, de Craen AJ, Trompet S, Gussekloo J, Stott DJ, Rodondi N, et al. Subclinical thyroid dysfunction and cognitive decline in old age. PloS one. 2013;8(3):e59199. https://doi.org/10.1371/journal.pone.0059199

  • 54. Ganguli M, Burmeister LA, Seaberg EC, Belle S, DeKosky ST. Association between dementia and elevated TSH: a community-based study. Biol Psychiatry. 1996;40(8):714-25. https://doi.org/10.1016/0006-3223(95)00489-0

  • 55. Tan ZS, Vasan RS. Thyroid function and Alzheimer’s disease. J Alzheimers Dis. 2009;16(3):503–7. https://doi.org/10.3233/JAD-2009-0991

  • 56. Johansson P, Almqvist EG, Johansson JO, Mattsson N, Hans-son O, Wallin A, et al. Reduced cerebrospinal fluid level of thyroxine in patients with Alzheimer’s disease. Psychoneuroendocrinology. 2013;38(7):1058–66. https://doi.org/10.1016/j.psyneuen.2012.10.012

  • 57. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76–131. https://doi.org/10.1210/er.2006-0043

  • 58. Braun D, Kinne A, Brauer AU, Sapin R, Klein MO, Kohrle J, et al. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia. 2011;59(3):463–71. https://doi.org/10.1002/glia.21116

  • 59. Mallat M, Lima FR, Gervais A, Colin C, Moura Neto V. New insights into the role of thyroid hormone in the CNS: the microglial track. Mol Psychiatry. 2002;7(1):7–8. https://doi.org/10.1038/sj.mp.4001988

  • 60. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12(2):111–21. https://doi.org/10.1038/nrendo.2015.205

  • 61. Kalyanaraman H, Schwappacher R, Joshua J, Zhuang S, Scott BT, Klos M, et al. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci Signal. 2014;7(326):ra48. https://doi.org/10.1126/scisignal.2004911

  • 62. Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M, et al. Effects of 3,3’,5-triiodothyronine on microglial functions. Glia. 2015;63(5):906–20. https://doi.org/10.1002/glia.22792

  • 63. Noda M. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders. Front Cell Neurosci. 2015;9:194. https://doi.org/10.3389/fncel.2015.00194

  • 64. Noda M, Mori Y, Yoshioka Y. Sex- and Age-Dependent Effects of Thyroid Hormone on Glial Morphology and Function. OM&P. 2016;2:85–92.

  • 65. Noda M. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction. Vitam Horm. 2018;106:313–31. https://doi.org/10.1016/bs.vh.2017.05.005

  • 66. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, et al. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci. 2001;21(6):1975–82.

  • 67. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, et al. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci. 2007;27(48):13065–73. https://doi.org/10.1523/JNEUROSCI.3467-07.2007

  • 68. Ifuku M, Okuno Y, Yamakawa Y, Izumi K, Seifert S, Kettenmann H, et al. Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration. J Neurochem. 2011;117(1):61–70. https://doi.org/10.1111/j.1471-4159.2011.07176.x

  • 69. Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication. Front Endocrinol (Lausanne). 2014;5:82. https://doi.org/10.3389/fendo.2014.00082

  • 70. Morte B, Gil-Ibanez P, Bernal J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology. 2018;159(5):2083–92. https://doi.org/10.1210/en.2017-03084

  • 71. Trentin AG. Thyroid hormone and astrocyte morphogenesis. J Endocrinol. 2006;189(2):189–97. https://doi.org/10.1677/joe.1.06680

  • 72. Das M, Ghosh M, Gharami K, Das S. Thyroid Hormone and Astrocyte Differentiation. Vitam Horm. 2018;106:283–312. https://doi.org/10.1016/bs.vh.2017.05.004

  • 73. Saelim N, John LM, Wu J, Park JS, Bai Y, Camacho P, et al. Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor. J Cell Biol. 2004;167(5):915–24. https://doi.org/10.1083/jcb.200409011

  • 74. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19(6):773–7. https://doi.org/10.1038/nm.3162

  • 75. Chocron ES, Sayre NL, Holstein D, Saelim N, Ibdah JA, Dong LQ, et al. The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism. Mol Endocrinol. 2012;26(7):1117–28. https://doi.org/10.1210/me.2011-1348

  • 76. Roostaei T, Nazeri A, Felsky D, De Jager PL, Schneider JA, Pollock BG, et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol Psychiatry. 2017;22(2):287–95. https://doi.org/10.1038/mp.2016.35

  • 77. Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014;127(6):825–43. https://doi.org/10.1007/s00401-014-1282-2

  • 78. Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, et al. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol. 2016;132(6):841–58. https://doi.org/10.1007/s00401-016-1641-2

  • 79. Domingues JT, Wajima CS, Cesconetto PA, Parisotto EB, Winkelmann-Duarte E, Santos KD, et al. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats. Mol Cell Endocrinol. 2018;478:62–76. https://doi.org/10.1016/j.mce.2018.07.008

  • 80. Lee JY, Petratos S. Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Mol Neurobiol. 2016;53(9):6568–83. https://doi.org/10.1007/s12035-016-0013-1

  • 81. Bottenstein JE. Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(6):1955–9.

  • 82. Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development. 1994;120(5):1097–108.

  • 83. Rodriguez-Pena A. Oligodendrocyte development and thyroid hormone. Journal of neurobiology. 1999;40(4):497–512.

  • 84. Fernandez M, Pirondi S, Manservigi M, Giardino L, Calza L. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat. Eur J Neurosci. 2004;20(8):2059–70. https://doi.org/10.1111/j.1460-9568.2004.03664.x

  • 85. Koper JW, Hoeben RC, Hochstenbach FM, van Golde LM, Lopes-Cardozo M. Effects of triiodothyronine on the synthesis of sulfolipids by oligodendrocyte-enriched glial cultures. Biochim Biophys Acta. 1986;887(3):327–34.

  • 86. Baas D, Fressinaud C, Ittel ME, Reeber A, Dalencon D, Puymirat J, et al. Expression of thyroid hormone receptor iso-forms in rat oligodendrocyte cultures. Effect of 3,5,3’-triiodo-L-thyronine. Neurosci Lett. 1994;176(1):47–51.

  • 87. Baas D, Bourbeau D, Carre JL, Sarlieve LL, Dussault JH, Puymirat J. Expression of alpha and beta thyroid receptors during oligodendrocyte differentiation. Neuroreport. 1994;5(14):1805–8.

  • 88. Carre JL, Demerens C, Rodriguez-Pena A, Floch HH, Vincendon G, Sarlieve LL. Thyroid hormone receptor iso-forms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J Neurosci Res. 1998;54(5):584–94. https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<584::AID-JNR3>3.0.CO;2-X

  • 89. Sarlieve LL, Rodriguez-Pena A, Langley K. Expression of thyroid hormone receptor isoforms in the oligodendrocyte lineage. Neurochem Res. 2004;29(5):903–22.

  • 90. Billon N, Tokumoto Y, Forrest D, Raff M. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev Biol. 2001;235(1):110–20. https://doi.org/10.1006/dbio.2001.0293

  • 91. Kondo T. [Cell-intrinsic timer regulating oligodendrocyte development]. Tanpakushitsu Kakusan Koso. 2001;46(7):821–8.

  • 92. Ahlgren SC, Wallace H, Bishop J, Neophytou C, Raff MC. Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol Cell Neurosci. 1997;9(5-6):420–32. https://doi.org/10.1006/mcne.1997.0631

  • 93. Baas D, Legrand C, Samarut J, Flamant F. Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(5):2907–11. https://doi.org/10.1073/pnas.052482299

  • 94. Tokumoto YM, Durand B, Raff MC. An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal. Dev Biol. 1999;213(2):327–39. https://doi.org/10.1006/dbio.1999.9397

  • 95. Gao FB, Apperly J, Raff M. Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev Biol. 1998;197(1):54–66. https://doi.org/10.1006/dbio.1998.8877

  • 96. Billon N, Jolicoeur C, Tokumoto Y, Vennstrom B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J. 2002;21(23):6452–60.

  • 97. Picou F, Fauquier T, Chatonnet F, Flamant F. A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol. 2012;26(4):608–18. https://doi.org/10.1210/me.2011-1316

  • 98. Tokumoto YM, Apperly JA, Gao FB, Raff MC. Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol. 2002;245(1):224–34. https://doi.org/10.1006/dbio.2002.0626

  • 99. Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, et al. Roles for p53 and p73 during oligodendrocyte development. Development. 2004;131(6):1211–20. https://doi.org/10.1242/dev.01035

  • 100. Dugas JC, Ibrahim A, Barres BA. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Mol Cell Neurosci. 2012;50(1):45–57. https://doi.org/10.1016/j.mcn.2012.03.007

  • 101. Tokumoto Y, Tamaki S, Kabe Y, Takubo K, Suematsu M. Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1. Sci Rep. 2017;7(1):1019. https://doi.org/10.1038/s41598-017-01023-9

  • 102. Knipper M, Bandtlow C, Gestwa L, Kopschall I, Rohbock K, Wiechers B, et al. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development. 1998;125(18):3709–18.

  • 103. Younes-Rapozo V, Berendonk J, Savignon T, Manhaes AC, Barradas PC. Thyroid hormone deficiency changes the distribution of oligodendrocyte/myelin markers during oligodendroglial differentiation in vitro. Int J Dev Neurosci. 2006;24(7):445–53. https://doi.org/10.1016/j.ijdevneu.2006.08.004

  • 104. Anlauf E, Derouiche A. Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne). 2013;4:144. https://doi.org/10.3389/fendo.2013.00144

  • 105. Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J. Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia. 1997;19(4):324–32.

  • 106. Baas D, Fressinaud C, Vitkovic L, Sarlieve LL. Glutamine synthetase expression and activity are regulated by 3,5,3’-triodo-L-thyronine and hydrocortisone in rat oligodendrocyte cultures. Int J Dev Neurosci. 1998;16(5):333–40.

  • 107. Power J, Mayer-Proschel M, Smith J, Noble M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol. 2002;245(2):362–75. https://doi.org/10.1006/dbio.2002.0610

  • 108. Venkatesh K, Srikanth L, Vengamma B, Chandrasekhar C, Prasad BC, Sarma PV. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones. Neurosci Lett. 2015;588:36–41. https://doi.org/10.1016/j.neulet.2014.12.050

  • 109. Chew LJ, King WC, Kennedy A, Gallo V. Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia. 2005;52(2):127–43. https://doi.org/10.1002/glia.20232

  • 110. Tanner DC, Cherry JD, Mayer-Proschel M. Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon-gamma. J Neurosci. 2011;31(16):6235–46. https://doi.org/10.1523/JNEUROSCI.5905-10.2011

  • 111. Buras A, Battle L, Landers E, Nguyen T, Vasudevan N. Thyroid hormones regulate anxiety in the male mouse. Horm Behav. 2014;65(2):88–96. https://doi.org/10.1016/j.yhbeh.2013.11.008

  • 112. Gould E, Allan MD, McEwen BS. Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone. Brain Res. 1990;20;525(2):327–9.

  • 113. Franco PG, Silvestroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol. 2008;212(2):458–67. https://doi.org/10.1016/j.expneurol.2008.04.039

  • 114. Wirth EK, Roth S, Blechschmidt C, Holter SM, Becker L, Racz I, et al. Neuronal 3’,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci. 2009;29(30):9439–49. https://doi.org/10.1523/JNEUROSCI.6055-08.2009

  • 115. Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, et al. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine. 2017;25:122–35. https://doi.org/10.1016/j.ebiom.2017.10.016

  • 116. Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood). 2015;240(9):1183–96. https://doi.org/10.1177/1535370214565975

  • 117. Bhumika S, Lemmens K, Vancamp P, Moons L, Darras VM. Decreased thyroid hormone signaling accelerates the rein-nervation of the optic tectum following optic nerve crush in adult zebrafish. Mol Cell Neurosci. 2015;68:92–102. https://doi.org/10.1016/j.mcn.2015.04.002

  • 118. Lariosa-Willingham K, Leonoudakis D. Using Acutely Dissociated and Purified Oligodendrocyte Precursor Cells for High-Throughput Drug Screening to Identify Compounds that Promote Oligodendrocyte Differentiation. Curr Protoc Cell Biol. 2018;79(1):e49. https://doi.org/10.1002/cpcb.49

OPEN ACCESS

Journal + Issues

Search