Possible Deleterious Impact of Glyphosate and its Commercial Formulation in Reproductive Health of Fishes


Glyphosate (GLY) is the active ingredient of Roundup® and it is the most utilized herbicide worldwide in the maintenance of conventional agricultural crops, and lawns in parks. A growing number of studies have associated environmental GLY to different pathologies such as obesity, diabetes, heart disease, Alzheimer’s disease, depression, and autism. Different fish species have been used for a long time as experimental biological models to measure the environmental impact of different substances. Therefore, the present study approached the possible association between the exposure to GLY / Roundup® and the ecotoxicological impact on fish reproductive health. With this goal, we performed a comprehensive analysis of the literature and its content by systematic review of international databases. Two independent electronic searches were performed on Medline / PubMed and Scielo for identifying relevant studies published in English up to September 2019. The application of inclusion / exclusion criteria settled the boundaries for this systematic review and after qualitative analysis of the data; we found evidences that suggest a link between the exposure to GLY / Roundup® with deleterious effects on reproductive health in eight different species of fish.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bai SH, Ougbourne SM. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res Int. 2016;23(19):18988–9001. https://doi.org/10.1007/s11356-016-7425-3

  • 2. Gomes MP, Smedbol E, Chalifour A, Hénault-Ethier L, Labrecque M, Lepage L, et al. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot. 2014;65(17):4691–703. https://doi.org/10.1093/jxb/eru269

  • 3. Davoren MJ, Schiestl RH. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis. 2018;39(10):1207–15. https://doi.org/10.1093/carcin/bgy105

  • 4. Argou-Cardozo I, Zeidán-Chuliá F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med Sci (Basel). 2018;6(2):E29. https://doi.org/10.3390/medsci6020029

  • 5. Zeidán-Chuliá F, Argou-Cardozo I. Are Gene–Environment Interactions Underpinning the Development of Creative Polymathy? Interchange. 2018; 49(3):343–52. https://doi.org/10.1007/s10780-018-9329-2

  • 6. Lovely C, Rampersad M, Fernades Y, Eberhart J. Gene-environment interactions in development and disease. Wiley Interdiscip Rev Dev Biol. 2017;6(1). https://doi.org/10.1002/wdev.247

  • 7. Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC. Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. Neuromolecular Med. 2013;15(2):364–83. https://doi.org/10.1007/s12017-013-8224-3

  • 8. Argou-Cardozo I, Cano Martín JC, Zeidán-Chuliá F. Dental amalgam fillings and the use of technological devices as an environmental factor: Updating the cumulative mercury exposure-based hypothesis of autism. Eur J Dent. 2017;11(4): 569–70. https://doi.org/10.4103/ejd.ejd_222_17

  • 9. Choudri BS, Charabi Y, Ahmed M. Pesticides and Herbicides. Water Environ Res. 2018;90(10):1663–78. https://doi.org/10.2175/106143018X15289915807362

  • 10. Foster WG. Environmental toxicants and human fertility. Minerva Ginecol. 2003;55(5):451–7.

  • 11. McCue K, DeNicola N. Environmental Exposures in Reproductive Health. Obstet Gynecol Clin North Am. 2019;46(3):455–68. https://doi.org/10.1016/j.ogc.2019.04.005.

  • 12. May H, He X, Qi K, Wang T, Qi Y, Cui L, et al. Effects of environmental contaminants on fertility and reproductive health. J Environ Sci (China) 2019;77:210–17. https://doi.org/10.1016/j.jes.2018.07.015

  • 13. Mattison DR, Plowchalk DR, Meadows MJ, al-Juburi AZ, Gandy J, Malek A. Reproductive toxicity: male and female reproductive systems as targets for chemical injury. Med Clin North Am. 1990;74(2):391–411.

  • 14. Marques MN, Passos EA, da Silva MT, Correia FO, Santos AM, Gomes SS, et al. Determination of glyphosate in water samples by IC. J Chromatogr Sci. 2009;47(9):822–4.

  • 15. Schmale MC, Naim RS, Winn RN. Aquatic Animal Models of Human Disease. Comp Biochem Physiol C Toxicol Pharmacol. 2007;145(1):1–4.

  • 16. Soso AB, Barcellos LJ, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Anziliero D, et al. Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundiá (Rhamdia quelen). Environ Toxicol Pharmacol. 2007;23(3):308–13. https://doi.org/10.1016/j.etap.2006.11.008

  • 17. Hued AC, Oberhofer S, de los Ángeles Bistoni M. Exposure to a commercial glyphosate formulation (Roundup®) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Arch Environ Contam Toxicol. 2012;62(1):107–17. https://doi.org/10.1007/s00244-011-9686-7

  • 18. Harayashiki CA, Varela AS Jr, Machado AA, Cabrera Lda C, Primel EG, Bianchini A, et al. Toxic effects of the herbicide Roundup in the guppy Poecilia vivipara acclimated to fresh water. Aquat Toxicol. 2013;142-143:176–84. https://doi.org/10.1016/j.aqua-tox.2013.08.006

  • 19. Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YM, Nazari EM. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glypho-sate. J Toxicol Environ Health A. 2014;77(7):405–14. https://doi.org/10.1080/15287394.2014.880393

  • 20. Lopes FM, Varela Junior AS, Corcini CD, da Silva AC, Guazzelli VG, Tavares G, et al. Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat Toxicol. 2014;155:322–6. https://doi.org/10.1016/j.aquatox.2014.07.006

  • 21. Uren Webster TM, Laing LV, Florance H, Santos EM. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio). Environ Sci Technol. 2014;48(2):1271–9. https://doi.org/10.1021/es404258h

  • 22. Gonçalves BB, Nascimento NF, Santos MP, Bertolini RM, Yasui GS, Giaquinto PC. Low concentrations of glyphosate-based herbicide cause complete loss of sperm motility of yellowtail tetra fish Astyanax lacustris. J Fish Biol. 2018;92(4):1218–24. https://doi.org/10.1111/jfb.13571

  • 23. Jin J, Kurobe T, Ramírez-Duarte WF, Bolotaolo MB, Lam CH, Pandey PK, et al. Sub-lethal effects of herbicides penoxsulam, imazamox, fluridone and glyphosate on Delta Smelt (Hypomesus transpacificus). Aquat Toxicol. 2018;197:79–88. https://doi.org/10.1016/j.aquatox.2018.01.019

  • 24. Zebral YD, Lansini LR, Costa PG, Roza M, Bianchini A, Robaldo RB. A glyphosate-based herbicide reduces fertility, embryonic upper thermal tolerance and alters embryonic diapause of the threatened annual fish Austrolebias nigrofasciatus. Chemosphere. 2018;196:260–9. https://doi.org/10.1016/j.chemo-sphere.2017.12.196

  • 25. Smith CM, Vera MKM, Bhandari RK. Developmental and epi-genetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). Aquat Toxicol. 2019;210:215–26. https://doi.org/10.1016/j.aquatox.2019.03.005

  • 26. Annett R, Habibi H, Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol. 2014;34(5):458–79. https://doi.org/10.1002/jat.2997

  • 27. Damalas CA, Eleftherohorinos IG. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int J Environ Res Public Health. 2011;8(5): 1402–19. https://doi.org/10.3390/ijerph8051402

  • 28. Schartl M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech. 2014;7(2):181–92. https://doi.org/10.1242/dmm.012245


Journal + Issues