Open access


The aim of the paper is to validate the use of measurement methods in the study of GFRP joints. A number of tests were carried out by means of a tensile machine. The studies were concerned with rivet connection of composite materials. One performed two series of tests for two different forces and two fibre orientations. Using Finite Element Method (FEM) and Digital Image Correlation (DIC), strain maps in the test samples were defined. The results obtained with both methods were analysed and compared. The destructive force was analysed and, with the use of a strain gauge, the clamping force in a plane parallel to the annihilated sample was estimated. Destruction processes were evaluated and models of destruction were made for this type of materials taking into account their connections, such as riveting.

[1] J.P. Davim, P. Reis, and C.C. Antonio. Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Composites Science and Technology, 64(2):289–297, 2004. doi: 10.1016/S0266-3538(03)00253-7.

[2] A. Ataş and C. Soutis. Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering, 54:20–27, 2013. doi: 10.1016/j.compositesb.2013.04.071.

[3] A.M. Girão Coelho and J.T. Mottram. A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74:86–107, 2015. doi: 10.1016/j.matdes.2015.02.011.

[4] Z. Cao and M. Cardew-Hall. Interference-fit riveting technique in fiber composite laminates. Aerospace Science and Technology, 10(4):327–330, 2006. doi: 10.1016/j.ast.2005.11.003.

[5] M. Kłonica, J. Kuczmaszewski, M.P. Kwiatkowski, and J. Ozonek. Polyamide 6 surface layer following ozone treatment. International Journal of Adhesion and Adhesives, 64:179–187, 2016. doi: 10.1016/j.ijadhadh.2015.10.017.

[6] R.F. Gibson. Principles of composite material mechanics. CRC Press, 4 edition, 2016.

[7] R. Bielawski, M. Kowalik, K. Suprynowicz, and P. Pyrzanowski. Possibility of usage of aluminium rivet nuts connections in composite materials. In Solid State Phenomena, volume 240, pages 137–142. Trans Tech Publications, 2016. doi: 10.4028/

[8] L. Blaga, J.F. Dos Santos, R. Bancila, and S.T. Amancio-Filho. Friction Riveting (FricRiveting) as a new joining technique in GFRP lightweight bridge construction. Construction and Building Materials, 80:167–179, 2015. doi: 10.1016/j.conbuildmat.2015.01.001.

[9] N. Chowdhury, W.K. Chiu, J. Wang, and P. Chang. Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures. Composite Structures, 121:315–323, 2015. doi: 10.1016/j.compstruct.2014.11.004.

[10] J.-H. Yun, J.-H. Choi, and J.-H. Kweon. A study on the strength improvement of the multi-bolted joint. Composite Structures, 108:409–416, 2014. doi: 10.1016/j.compstruct.2013.09.047.

[11] M. Rodzewicz. An investigation into the strength and fatigue properties of a high-loaded aeronautical composite structures. In Proceedings of the Eight International Seminar Resent Research and Design Progress in Aeronautical Engineering and its Influence on Education, Brno, Czech Republic, 2008.

[12] K. Palanikumar. Experimental investigation and optimisation in drilling of GFRP composites. Measurement, 44(10):2138–2148, 2011. doi: 10.1016/j.measurement.2011.07.023.

[13] C. Atas. Bearing strength of pinned joints in woven fabric composites with small weaving angles. Composite structures, 88(1):40–45, 2009. doi: 10.1016/j.compstruct.2008.04.002.

[14] J.H. Deng, C. Tang, M.W. Fu, and Y.R. Zhan. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting. Materials Science and Engineering: A, 591:26–32, 2014. doi: 10.1016/j.msea.2013.10.084.

[15] J. Zhang, D. Qi, L. Zhou, L. Zhao, and N. Hu. A progressive failure analysis model for composite structures in hygrothermal environments. Composite Structures, 133:331–342, 2015. doi: 10.1016/j.compstruct.2015.07.063.

[16] B. Koohbor, S. Mallon, A. Kidane, and M.A. Sutton. A DIC-based study of in-plane mechanical response and fracture of orthotropic carbon fiber reinforced composite. Composites Part B: Engineering, 66:388–399, 2014. doi: 10.1016/j.compositesb.2014.05.022.

[17] M.A. Sutton, J.J. Orteu, and H. Schreier. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media, 2009.

[18] W. Zhiqiang, F. Fengzhou, L. Bing, and W. Zhiyong. An experimental method for eliminating effect of rigid out-of-plane motion on 2D-DIC. Optics and Lasers in Engineering, 73:137–142, 2015. doi: 10.1016/j.optlaseng.2015.04.015.

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 275 25
PDF Downloads 130 127 12