Real-Time Human in the Loop MBS Simulation in the Fraunhofer Robot-Based Driving Simulator

Open access

Abstract

The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.

References

  • [1] Merlet J.P.: Parallel Robots, Springer, ISBN 1-4020-4132-24.

  • [2] Robuffo Giordano P., Masone C., Tesch J., Breidt M., Pollini L., Bülthoff H. H.: A Novel Framework for Closed-Loop Robotic Motion Simulation Part I: Inverse Kinematics Design, In IEEE International Conference on Robotics and Automation, pages 3876-3883, Anchorage, 2010.

  • [3] European Patent Specification EP 1 289 616 B1.’ Ride Apparatus, 2004.

  • [4] Kleer M., Hermanns O., Dreβler K., and Müller S.: Driving simulations for commercial vehicles- A technical overview of a robot based approach, In S. Espié, A. Kemeny and F. Mérienne, editors, Proceedings of the driving simulation conference Europe, pages 223-232, Paris, 2012.

  • [5] Kleer M., Hermanns O., and Müller S.: Konzeption eines Fahrsimulators für die Nutzfahrzeug-industrie auf Basis eines Industrieroboters, In K. Berns, C. Schindler, K. Dreβler, B. Jörg, R. Kalmar and G. Zoylinski, editors, Proceedings of the 2nd commercial vehicle technology symposium, pages 49-58, Kaiserslautern, 2012.

  • [6] Heiβing B.: Fahrwerkhandbuch. Vieweg Teubner. ISBN 978-3-8348-0821-9, 2011.

  • [7] Reid L.D., Nahon Reid M. A.: Flight Simulation Motion-Base Drive Algortihms Part 1: Developing and Testing the Equations, ISBN 0082-5255. UTIAS Report No. 296, 1985.

  • [8] Aubert H.: Physiologische Studien über die Orientierung, Verlag der II. Laupp'schen Buch-handlung, Tübingen, 1888.

  • [9] Stoner H. A., Fischer D. L., and Mollenhauer M., Jr.: Simulator and Scenario Factors Influencing Simulator Sickness, in D.L. Fischer, M. Rizzo, J. K. Caird and J. D. Lee, Handbook of driving simulation for engineering, medicine, and psychology, pages 14/1 - 14/23, 2011.

  • [10] Berthoz A., Bles W., Bülthoff H. H. et al.: Motion Scaling for High-Performance Driving Simulators, In IEEE Transactions on Human-Machine Systems, Vol. 43, No. 3, 2013.

  • [11] Spong M.W., Hutchinson S., Vidyasagar M.: Robot Modeling and Control, John Wiley & Sons. ISBN 978-0471649908, 2005.

  • [12] Burger M., Bäcker M., Gallrein A., Kleer M.: Integration eines detaillierten, flexiblen Reifen-modells in den Fraunhofer Fahrsimulator, 14. Internationale VDI-Tagung, Reifen-Fahrwerk-Fahrbahn, VDI-Berichte Nr. 2211, page 167, Hannover, 2013.

  • [13] CDTire - Scalable tire model for full vehicle simulations, 2013. Http://www.itwm. fraunhofer.de/en/departments/mdf/services-and-products/cdtire.html

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 19
PDF Downloads 2 2 1