The Oocyte´s Nucleolus Precursor Body: The Globe for Life

Open access

Abstract

The nucleolus is the cell organelle responsible for ribosome synthesis and, hence, for protein synthesis. In the mammalian oocyte, the nucleolus compacts into a dense sphere with no ribosome synthesis well in advance of ovulation. It seems, that this body is of utmost importance for the development of the embryo. It is unknown, however, how it exerts this essential function. During the last two decades, great attention has been paid to the study of nucleogenesis in oocytes and early embryos, with transcription of ribosomal DNA being evaluated as one of the criteria of normal development. In this review, we summarize some aspects of nucleolus transformation during oocyte growth, as well as during early embryonic development with possible impact on the quality of the embryos used in biomedical research. This knowledge in connection with further observations will substantially contribute to the development of new criteria suitable for evaluation of oocytes and embryos used in biomedical application.

Abstract

The nucleolus is the cell organelle responsible for ribosome synthesis and, hence, for protein synthesis. In the mammalian oocyte, the nucleolus compacts into a dense sphere with no ribosome synthesis well in advance of ovulation. It seems, that this body is of utmost importance for the development of the embryo. It is unknown, however, how it exerts this essential function. During the last two decades, great attention has been paid to the study of nucleogenesis in oocytes and early embryos, with transcription of ribosomal DNA being evaluated as one of the criteria of normal development. In this review, we summarize some aspects of nucleolus transformation during oocyte growth, as well as during early embryonic development with possible impact on the quality of the embryos used in biomedical research. This knowledge in connection with further observations will substantially contribute to the development of new criteria suitable for evaluation of oocytes and embryos used in biomedical application.

REFERENCES

1. Hyttel, P., Fair, T., Callesen, H., Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23-32. https://doi.org/10.1016/S0093-691X(96)00336-6

2. Fair, T., Hyttel, P., Greve, T., Boland, M. (1996). Nucleolus structure and transcriptional activity in relation to oocyte diameter in cattle. Mol. Reprod. Dev. 43, 503-512. https://doi.org/10.1002/(SICI)1098-2795(199604)43:4<503::AID-MRD13>3.0.CO;2-#

3. Bjerregaard, B., Wrenzycki, C., Philimonenko, V. V., Hozak, P., Laurincik, J., Niemann, H., Motlik, J., Maddox-Hyttel, P. (2003). Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol. Reprod. 70, 925-935. https://doi.org/10.1095/biolreprod.103.020941 PMid:14627545

4. Hyttel, P., Laurincik, J., Rosenkranz, C., Rath, D., Niemann, H., Ochs, R. L., Schellander, K. (2000). Nucleolar proteins and ultrastructure in preimplantation porcine embryos developed in vivo. Biol. Reprod. 63, 1848-1856. https://doi.org/10.1095/biolreprod63.6.1848 PMid:11090457

5. Laurincik, J., Thomsen, P.D., Hay-Schmidt, A., Avery, B., Greve, T., Ochs, R. L., Hyttel, P. (2000). Nucleolar proteins and nuclear ultrastructure in pre-implantation bovine embryos produced in vitro. Biol. Reprod. 62, 1024-1032. https://doi.org/10.1095/biolreprod62.4.1024 PMid:10727273

6. Bjerregaard, B., Wrenzycki, C., Strejcek, F., Laurincik, J., Holm, P., Ochs, R. L., Rosenkranz, C., Callesen, H., Rath, D., Niemann, H., Maddox-Hyttel, P. (2004). Expression of nucleolar related proteins in porcine preimplantation embryos produced in vivo and in vitro. Biol. Reprod. 70, 867-876. https://doi.org/10.1095/biolreprod.103.021683 PMid:14585813

7. Maddox-Hyttel, P., Bjerregaard, B., Laurincik, J. (2005). Meiosis and embryo technology: renaissance of the nucleolus. Reprod Fertil Dev. 17, 3-14. https://doi.org/10.1071/RD04108 PMid:15745627

8. Maddox-Hyttel, P., Svarcova, O., Laurincik, J. (2007). Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig. Theriogenology 68, 63-70. https://doi.org/10.1016/j.theriogenology.2007.03.015 PMid:17466364

9. Kyogoku, H., Ogushi, S., Miyano, T., Fulka, J. Jr. (2011). Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig. Mol. Reprod. Dev. 78, 426-435. https://doi.org/10.1002/mrd.21320 PMid:21542050

10. Ogushi, S., Palmieri, Ch., Fulka, H., Saitou, M., Miyano, T., Fulka, J. Jr. (2008). The maternal nucleolus is essential for early embryonic development in mammals, Science 319, 613-616. https://doi.org/10.1126/science.1151276 PMid:18239124

11. Wachtler, F., Stahl, A. (1993). The nucleolus: A structural and functional interpretation. Micron 24, 473-505. https://doi.org/10.1016/0968-4328(93)90026-W

12. Biggiogera, M., Malatesta, M., Abolhassani-Dadras, S., Amalric, F., Rothblum, L. I., Fakan, S. (2001). Revealing the unseen: the organizer region of the nucleolus. J. Cell Sci. 114, 3199–3205. PMid:11590246

13. Koberna, K., Malinsky, J., Pliss, A., Masata, M., Vecerova, J., Fialova, M., Bednar, J., Raska, I. (2002). Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J. Cell. Biol. 157, 743-748. https://doi.org/10.1083/jcb.200202007 PMid:12034768 PMCid:PMC2173423

14. Hozak, P., Cook, P. R., Schofer, C., Mosgoeller, W., Wachtler, F. (1994). Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J. Cell Sci. 107, 639-648. PMid:8207086

15. Boisvert, F. M., Van Koningsbruggen, S., Navascues, J., Lamond, A. I. (2007). The multifunctional nucleolus. Nature 8, 574-585. https://doi.org/10.1038/nrm2184

16. Fulka, H., Fulka, J. Jr. (2010). Nucleolar transplantation in oocytes and zygotes: challenges for further research. Mol. Hum. Reprod. 16, 63-67. https://doi.org/10.1093/molehr/gap088 PMid:19819895

17. Crozet, N., Motlik, J., Szollosi, D. (1981). Nucleolar fine structure and RNA synthesis in porcine oocytes during early stages of antrum formation. Biol. Cell. 41, 35-42.

18. Motlik, J., Crozet, N., Fulka, J. (1984). Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J. Reprod. Fertil. 72, 323-328. https://doi.org/10.1530/jrf.0.0720323 PMid:6392543

19. Kopecny, V., Biggiogera, M., Laurincik, J., Pivko, J., Grafenau, P., Martin, T.E., Luhrmann, R., Fu, X. D., Fakan, S. (1996). Fine structural cytochemical and immunocytochemical analysis of nucleic acids and ribonucleoprotein distribution in nuclei of pig oocytes and early preimplantation embryos. Chromosoma 104, 561-574. https://doi.org/10.1007/BF00352296 PMid:8662249

20. Kopecny, V., Landa, V., Pavlok, A. (1995). Localization of nucleic acids in the nucleoli of oocytes and early embryos of mouse and hamster: an autoradiographic study. Mol Reprod. Dev. 41 (4): 449-458. https://doi.org/10.1002/mrd.1080410407 PMid:7576612

21. Bouniol-Baly, C., Hamraoui, L., Guibert, J., Beaujean, N., Szollosi, M. S., Debey, P. (1999). Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol. Reprod. 60, 580-587. https://doi.org/10.1095/biolreprod60.3.580 PMid:10026102

22. De La Fuente, R. (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 292, 1-12. https://doi.org/10.1016/j.ydbio.2006.01.008 PMid:16466710

23. Fulka, H., Novakova, Z., Mosko, T., Fulka, J. Jr. (2009). The inability of fully grown germinal vesicle stage oocyte cytoplasm to transcriptionally silence transferred transcribing nuclei. Histochem Cell Biol. 132, 457-468. https://doi.org/10.1007/s00418-009-0625-x PMid:19649647

24. Andersen, J. S., Lam, Y. W., Leung, A. K. L., Ong, S., Lyon, C. E., Lamond, A. I., Mann, M. (2005). Nucleolar proteome dynamics. Nature 433, 77-82. https://doi.org/10.1038/nature03207 PMid:15635413

25. Ogushi, S., Yamagata, K., Obuse, C., Furuta, K., Wakayama, T., Matzuk, M. M., Saitou, M. (2017). Reconstitution of the oocyte nucleolus in mice through a single nucleolar protein, NPM2. J Cell Sci. 130, 2416-2429. https://doi.org/10.1242/jcs.195875 PMid:28600324

26. Shishova, K. V., Lavrentyeva, E. A., Dobrucki, J. W., Zatsepina, O. V. (2015). Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA. Dev. Biol. 397, 267-281. https://doi.org/10.1016/j.ydbio.2014.11.022 PMid:25481757

27. Bai, B., Liu, H., Laiho, M. (2014). Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio. 4, 441-449. https://doi.org/10.1016/j.fob.2014.04.010 PMid:24918059 PMCid:PMC4050192

28. Bai, B., Yegnasubramanian, S., Wheelan, S. J., Laiho, M. (2014). RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One. 9(9): e107519. doi: 10.1371/journal.pone.0107519. eCollection https://doi.org/10.1371/journal.pone.0107519

29. Probst, A. V., Okamoto, I., Casanova, M., El Marjou, F., Le Baccon, P., Almouzni, G. (2010). A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell. 19, 625-638. https://doi.org/10.1016/j.devcel.2010.09.002 PMid:20951352

30. Casanova, M., Pasternak, M., El Marjou, F., Le Baccon, P., Probst, A. V., Almouzni, G. (2013). Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 26, 1156-1167. https://doi.org/10.1016/j.celrep.2013.08.015 PMid:24055057

31. Santenard, A., Ziegler-Birling, C., Koch, M., Tora, L., Bannister, A. J., Torres-Padilla, M.E. (2010). Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853-862. https://doi.org/10.1038/ncb2089 PMid:20676102 PMCid:PMC3701880

32. Aguirre-Lavin, T., Adenot, P., Bonnet-Garnier, A., Lehmann, G., Fleurot, R., Boulesteix, C., Debey, P., Beaujean, N. (2012). 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 12, 12-30. https://doi.org/10.1186/1471-213X-12-30 PMid:23095683 PMCid:PMC3517311

33. Kyogoku, H., Fulka, J. Jr., Wakayama, T., Miyano, T. (2014). De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Development 141, 2255-2259. https://doi.org/10.1242/dev.106948 PMid:24803589

34. Morovic, M., Strejcek, F., Fulka Jr., J., Hyttel, P., Laurincik, J. (2014). Proteomic disproportion of nucleoli in pig and mouse fully grown oocytes. European Biotechnology Congress 2014, J. Biotech., 185, Supplement, September 2014, Page 46. https://doi.org/10.1016/j.jbiotec.2014.07.155

35. Morovic, M., Strejcek, F., Nakagawa, S., Deshmukh, R. S., Murin, M., Benc, M., Fulka, H., Kyogoku, H., Pendovski, L., Fulka, J., Jr., Laurincik, J. (2017). Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes, Zygote ahead of print.

36. Suh, N., Baehner, L., Moltzahn, F., Melton, C., Shenoy, A., Chen, J., Blelloch, R. (2010). MicroRNA function is globally suppressed in mouse oocytes and early embryos. Current Biol. 20, 271-277. https://doi.org/10.1016/j.cub.2009.12.044 PMid:20116247 PMCid:PMC2872512

37. Li, M., Xia, Y., Gu, Y., Zhang, K., Lang, Q., Chen, L., Guan, J., Luo, Z., Chen, H., Li, Y., Li, Q., Li, X., Jian, A., Shuai, S., Wang, J., Zhu, Q., Zhou, X., Gao, X., Li, X. (2010). MicroRNAome of porcine pre-and postnatal development. PLOS one 5:e11541. https://doi.org/10.1371/journal.pone.0011541 PMid:20634961 PMCid:PMC2902522

38. Niemann, H., Tina, X. C, King, E. A., Lee, R. S. F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151-163. https://doi.org/10.1530/REP-07-0397 PMid:18239046

39. Benc, M., Strejcek, F., Murin, M., Morovic, M., Martinkova, S., Jettmarova, D., Pendovski, L., Fulka, J. Jr., Laurincik, J. (2017). Nucleologenesis and nucleolotransfer in mammalian oocytes: A review. Mac Vet Rev. 40 (2): 117-124. https://doi.org/10.1515/macvetrev-2017-0023

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

Journal Information


CiteScore 2017: 0.32

SCImago Journal Rank (SJR) 2017: 0.195
Source Normalized Impact per Paper (SNIP) 2017: 0.387

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 169 19
PDF Downloads 49 49 6