Acute Oral Toxicity of Vetom 21.77 Based on Duddingtonia Flagrans in Broiler Chickens

Open access

Abstract

A 14-d study was undertaken to test the acute toxicity of a new preparation Vetom 21.77 based on the predacious fungus Duddingtonia flagrans. A total of 40 healthy 5-day-old broiler chickens (Hubbard F15, 100 ± 5 g), that had previously gone through a required 5-days adaptation to the environment, were orally dosed with the drug for 5 consecutive days at different doses, after which their health status was assessed daily up to the end of the experiment. According to the results, no substantial changes in the physiological state of the chickens were detected during the experiment. Internal organs weighing revealed no statistically significant differences between the groups, though weight coefficient values of internal organs of treated chickens slightly exceeded those of the control group. Some haematological parameters were significantly higher in the treatment group, without going beyond reference ranges. All chickens used in the experiment survived the study. The preparation has not produced any toxic effect even at a higher dose (4000 µL/kg bw/day). It is concluded that Vetom 21.77 pertains to preparations of IV toxicity class.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wang H. Qi J. Duan D. Dong Y. Xu X. Zhou G. (2018). Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses. Food Control 86 200-206. https://doi.org/10.1016/j.foodcont.2017.11.027

  • 2. Mot D. Timbermont L. Haesebrouck F. Ducatelle R. Van Immerseel F. (2014). Progress and problems in vaccination against necrotic enteritis in broiler chickens. Avian Pathol. 43(4): 290-300. https://doi.org/10.1080/03079457.2014.939942 PMid:24980518

  • 3. Kim Y-J. Bostami A.B.M. Islam M.M. Mun H.S. Ko S.Y. Yang C-J. (2016). Effect of fermented Ginkgo biloba and Camelia sinensisbased probiotics on growth performance immunity and caecal microbiology in broilers. Int J Poult Sci. 15(2): 62-71. https://doi.org/10.3923/ijps.2016.62.71

  • 4. Yudiarti T. Yunianto B.I. Murwani R. Kusdiyantini E. (2012). The effect of Chrysonilia crassa additive on duodenal and caecal morphology bacterial and fungal number and productivity of Ayam Kampung. Int J Sci Eng. 3(2): 26-29. https://doi.org/10.12777/ijse.3.2.26-29

  • 5. Godfrey R. W. Dodson R. E. (2008). Alternative methods of controlling parasites in small ruminants. In: T. Morris M. Keilty (Eds.) Alternative health practices for livestock (pp. 62-70). Hoboken: Wiley-Blackwell.

  • 6. Kazda M. Langer S. Bengelsdorf F.R. (2014). Fungi open new possibilities for anaerobic fermentation of organic residues. Energy Substain Soc. 4 (1): 6. https://doi.org/10.1186/2192-0567-4-6

  • 7. Sugiharto S. Yudiarti T. Isroli I. (2015). Functional properties of filamentous fungi isolated from the Indonesian fermented dried cassava with particular application on poultry. Mycobiol. 43 (4): 415-422. https://doi.org/10.5941/MYCO.2015.43.4.415 PMid:26839501 PMCid:PMC4731646

  • 8. Kim H.S. Hong J.T. Kim Y. Han S.B. (2011). Stimulatory effect of β-glucans on immune cells. Immune Netw. 11(4): 191-195. https://doi.org/10.4110/in.2011.11.4.191 PMid:22039366 PMCid:PMC3202617

  • 9. Sugiharto S. Yudiarti T. Isroli I. Widiastuti E. Putra F.D. (2017). Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance blood profile intestinal microbial population and carcass traits in broilers exposed to heat stress. Arch Anim Breed. 60 (3): 347. https://doi.org/10.5194/aab-60-347-2017

  • 10. Flores-Crespo J. Herrera-Rodríguez D. Mendoza de Gives P. Liébano-Hernández E. Vázquez-Prats V. López-Arellano M. (2003). The predatory capability of three nematophagous fungi in the control of Haemonchus contortus infective larvae in ovine faeces. J Helminthol. 77 (4): 297-303. https://doi.org/10.1079/JOH2003197 PMid:14627445

  • 11. Nicola L. Tosi S. Savini D. (2014). In vitro evaluation of nematophagous activity of fungal isolates. J Basic Microbiol. 54(1): 1-5. https://doi.org/10.1002/jobm.201200431 PMid:23553775

  • 12. Pe-a M.T. Miller J.E. Fontenot M.E. Gillespie A. Larsen M. (2002). Evaluation of Duddingtonia flagrans in reducing infective larvae of Haemonchus contortus in feces of sheep. Vet Parasitol. 103 (3): 259-265. https://doi.org/10.1016/S0304-4017(01)00593-3

  • 13. Aguilar-Marcelino L. Mendoza-de-Gives P. Torres-Hernández G. López-Arellano M.E. Becerril-Pérez C.M. Orihuela-Trujillo A. Olmedo-Juárez A. (2017). Consumption of nutritional pellets with Duddingtonia flagrans fungal chlamydospores reduces infective nematode larvae of Haemonchus contortus in faeces of Saint Croix lambs. J Helminthol. 91(6): 665-671. https://doi.org/10.1017/S0022149X1600081X

  • PMid:27866480

  • 14. Mendoza-De Gives P. Zapata N.C. Hernández E.L. Arellano M.E. Rodríguez D.H. Gardu-o R.G. (2006). Biological control of gastrointestinal parasitic nematodes using Duddingtonia flagrans in sheep under natural conditions in Mexico. Ann NY Acad Sci. 1081(1): 355-359. https://doi.org/10.1196/annals.1373.050 PMid:17135538

  • 15. Braga F.R. Araujo J.M. Araújo J.V. Soares F.E.F. Tavela A.O. Frassy L.N. Lima W.S. Mozzer L.R. (2013). In vitro predatory activity of conidia of fungal isolates of the Duddingtonia flagrans on Angiostrongylus vasorum first-stage larvae. Rev Soc Bras Med Trop. 46(108): 108-110. https://doi.org/10.1590/0037-86829612013 PMid:23563838

  • 16. Zarrin M. Rahdar M. Poormohamadi F. Rezaei-Matehkolaei A. (2017). In vitro nematophagous activity of predatory fungi on infective nematodes larval stage of Strongyloidae family. Open Access Maced J Med Sci. 5(3): 281-284. https://doi.org/10.3889/oamjms.2017.064

  • 17. Meyer W.J. Wiebe M.G. (2003). Enzyme production by the nematode-trapping fungus Duddingtonia flagrans. Biotechnol Lett. 25(10): 791-795. https://doi.org/10.1023/A:1023580621840 PMid:12882009

  • 18. Braga F.R. Araújo J.V. Soares F.E.F. Araujo J.M. Tavela A.O. de Carvalho L.M. Mello I.N.K. Paula A.T. Queiroz J.H. (2013). Interaction of the nematophagous fungus Duddingtonia flagrans on Amblyomma cajannense engorged females and enzymatic characterisation of its chitinase. Biocontrol Sci Technol. 23(5): 584-594. https://doi.org/10.1080/09583157.2013.789481

  • 19. GOST 52837-2007 [Internet]. Russian Federation (RU): the Russian Federal Agency for Technical Regulation and Metrology [cited 2018 Aug 24]. http://www.gostrf.com/normadata/1/4293835/4293835128.pdf

  • 20. Marcu A. Vacaru-Opriş I. Dumitrescu G. Ciochina L.P. Marcu A. Nicula M. Kelciov B. (2013). The influence of the genotype on economic efficiency of broiler chickens growth. Sci Pap Anim Sci Biotech. 46(2): 339-346.

  • 21. European Food Safety Authority (EFSA). (2006). Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety of the micro-organism preparation of Duddingtonia flagrans for use as a feed additive for calves in accordance with Council Directive 70/524/EEC. EFSA J. 4(3): 334. https://doi.org/10.2903/j.efsa.2006.334

  • 22. Healey K Lawlor C Knox MR inventors; International Animal Health Products Pty Ltd. assignee. Composition comprising duddingtonia flagrans. Australian patent WO2018023151A1. 2018 Feb 8.

  • 23. Hashemi S.R. Idrus Z. Bejo M.H. Faridah A. Somchit M.N. (2008). Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. Int J Pharmacol. 4(5): 352-360. https://doi.org/10.3923/ijp.2008.352.360

  • 24. Haas J. Baungratz A. Takahashi S. Potrich M. Lozano E. Mazaro S. (2017). Toxicity assessment of insecticidal plants to chicken. Rev Bras Pl Med. 19(2): 190-196.

  • 25. Wang B.B. Liu W. Chen M.Y. Li X. Han Y. Xu Q. Liu J.L. (2015). Isolation and characterization of China isolates of Duddingtonia flagrans a candidate of the nematophagous fungi for biocontrol of animal parasitic nematodes. Journal Parasitol. 101(4): 476-484. https://doi.org/10.1645/14-715.1 PMid:25978186

  • 26. Campos A.K. Araújo J.V. Guimarães M.P. Dias A.S. (2009). Resistance of different fungal structures of Duddingtonia flagrans to the digestive process and predatory ability on larvae of Haemonchus contortus and Strongyloides papillosus in goat feces. Parasitol Res. 105(4): 913-919. https://doi.org/10.1007/s00436-009-1476-z PMid:19471967

  • 27. Grønvold J. Wolstrup J. Larsen M. Gillespie A. Giacomazzi F. (2004). Interspecific competition between the nematode-trapping fungus Duddingtonia flagrans and selected microorganisms and the effect of spore concentration on the efficacy of nematode trapping. J Helminthol. 78(1): 41-46. https://doi.org/10.1079/JOH2003195 PMid:14972035

  • 28. Fitz-Aranda J. Mendoza-de-Gives P. Torres-Acosta J. Liébano-Hernández E. López-Arellano M. Sandoval-Castro C. Quiroz-Romero H. (2015). Duddingtonia flagrans chlamydospores in nutritional pellets: Effect of storage time and conditions on the trapping ability against Haemonchus contortus larvae. J Helminthol. 89(1): 13-18. https://doi.org/10.1017/S0022149X13000539 PMid:23953994

  • 29. Ahren D. Faedo M. Rajashekar B. Tunlid A. (2004). Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol Res. 108(10): 1205-1214. https://doi.org/10.1017/S0953756204000942 PMid:15535071

  • 30. Rafikova E.R. Nozdrin G.A. (2017). A preliminary investigation on determination of a toxicity class of a new probiotic preparation vetom 21.77. Vet Zoot Biot. 9 51-55.

  • 31. Nozdrin G.A. Rafikova E.R. (2017). Evaluation of allergic effect of a new probiotic preparation vetom 21.77. Adv Agric Biol Sci. 3(4): 35-39. https://doi.org/10.22406/aabs-17-3.4-35-39

Search
Journal information
Impact Factor


CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 140 14
PDF Downloads 88 88 13