Emperipolesis: Sternal and Femoral Microenvironment Induces Megakaryiocyte Emperipolesis in the Wistar Strain

Open access


Emperipolesis is considered a physiological phenomena often present in various pathophysiological conditions, but its etiology is still unknown. In this study, we analyzed the number of megakaryocytes and the percentage of emperipoletic cells in the sternal and femoral bone marrow of Wistar rats. Five types in the thrombopoiesis lineage (megakaryoblasts, promegakaryocytes and megakaryocytes - acidophilic, basophilic and thrombocytogenic) were determined. Except for basophilic megakaryocytes, significant differences were found for number of thrombopoietic cells in the sternal and femoral bone marrow. A larger number of thrombocytogenic megakaryocytes were present in the sternal bone marrow. Emperipoletic cells were significantly present in the femoral compared to the sternal bone marrow. Emperipolesis was typical for lymphocytes and neutrophils individually, while emperipolesis with two or more cells within thrombopoietic cell was also present (1-7 %) and significant differences between the sternal and femoral bone marrow were detected. Emperipolesis was found in all analysed rats and it most commonly occured within mature megakaryocytes and rarely megakaryoblasts, while it was not recorded in the promegakaryocytes. The high incidence of megakaryocytes with emperopolesis in rats could be a consequence of “normal” cell retention in the cytoplasm of megakaryocytes while passing blood cells to circulation or related to haematopoietic response due to high incidence of inbreeding.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Gupta N. Jadhav K. Shah V. (2017). Emperipolesis entosis and cell cannibalism: Demystifying the cloud. J Oral Maxillofac Pathol. 21 (1):92–98. https://doi.org/10.4103/0973-029X.203763 PMid:28479694 PMCid:PMC5406827

  • 2. Raja H. Subramanyam S.G. Govindaraj S. Babu M.K. (2011). A rare cause of massive lymphadenopathy. Indian J Surg Oncol. 2 (3): 212-214. https://doi.org/10.1007/s13193-011-0102-6 PMid:22942615 PMCid:PMC3272174

  • 3. Sable M.N. Sehgal K. Gadage V.S. Subramanian P.G. Gujral S. (2009). Megakaryocytic emperipolesis: A histological finding in myelodysplastic syndrome. Indian J Pathol Microbiol. 52 599–600. https://doi.org/10.4103/0377-4929.56153 PMid:19805998

  • 4. Rastogi V. Sharma R. Misra S.R. Yadav L. Sharma V. (2014). Emperipolesis – A Review. J Clin Diagn Res. 8 (12): ZM01–ZM02. https://doi.org/10.7860/JCDR/2014/10361.5299

  • 5. Amita K. Vijay Shankar S. Abhishekh M.G. Geethalakshmi U. (2011). Emperipolesis in a case of adult T cell lymphoblastic lymphoma (mediastinal type) – Detected at FNAC and imprint cytology. Online J Health Allied Sci. 10 11.

  • 6. Vemuganti G.K. Naik M.N. Honavar S.G. (2008). Rosaidorfman disease of the orbit. J Hematol Oncol. 1 7. https://doi.org/10.1186/1756-8722-1-7 PMid:18588698 PMCid:PMC2474646

  • 7. Lee W.B. Erm S.K. Kim K.Y. Becker R.P. (1999). Emperipolesis of erythroblasts within Kupffer cells during hepatic hemopoiesis in human fetus. Anat Rec. 256 158–164. https://doi.org/10.1002/(SICI)1097-0185(19991001)256:2<158::AID-AR6>3.0.CO;2-0

  • 8. Dziecioł J. Lemancewicz D. Kłoczko J. Bogusłowicz W. Lebelt A. (2001). Megakaryocytes emperipolesis in bone marrow of the patients with non-Hodgkin’s lymphoma. Folia Histochem Cytobiol. 2 (39):142-143.

  • 9. Poppema S. (1978). Sternberg-Reed cells with intracytoplasmic lymphocytes. Phagocytosis or emperipolesis? Virchows Arch A Pathol Anat Histol. 380 355–359. https://doi.org/10.1007/BF00431321 PMid:153049

  • 10. Xia P. Wang S. Guo Z. Yao X. (2008). Emperipolesis entosis and beyond: Dance with fate. Cell Res. 18 705–707. https://doi.org/10.1038/cr.2008.64 PMid:18521104

  • 11. Sierro F. Tay S.S. Warren A. Le Couteur D.G. McCaughan G.W. Bowen D.G. Bertolino P. (2015). Suicidal emperipolesis: a process leading to cell-in-cell structures T cell clearance and immune homeostasis. Curr Mol Med. 15 (9):819-827. https://doi.org/10.2174/1566524015666151026102143 PMid:26511707

  • 12. Mansour A. Abou-Ezzi G. Sitnicka E. Jacobsen S.E.W. Wakkach A. Blin-Wakkach C. (2012). Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 209 (3):537–549. https://doi.org/10.1084/jem.20110994 PMid:22351931 PMCid:PMC3302238

  • 13. Arai F. Hirao A. Ohmura M. Sato H. Matsuoka S. Takubo K. Ito K. Koh G.Y. Suda T. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 118 (2): 149–161. https://doi.org/10.1016/j.cell.2004.07.004 PMid:15260986

  • 14. Kunisaki Y. Bruns I. Scheiermann C. Ahmed J. Pinho S. Zhang D. Mizoguchi T. Wei Q. Lucas D. Ito K. Mar J.C. Bergman A. Frenette P.S. (2013). Nature. 502 (7473): 637–643. https://doi.org/10.1038/nature12612 PMid:24107994 PMCid:PMC3821873

  • 15. Becker R.P. De Bruyn P.P. (1976). The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 145 (2):183–205. https://doi.org/10.1002/aja.1001450204 PMid:1258805

  • 16. Heazlewood S.Y. Neaves R.J. Williams B. Haylock D.N. Adams T.E. Nilsson S.K. (2013). Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11 (2):782–792. https://doi.org/10.1016/j.scr.2013.05.007 PMid:23792434

  • 17. Hartwig J. Italiano J. (2003). The birth of the platelet. J Thromb Haemost. 1 (7):1580–1586. https://doi.org/10.1046/j.1538-7836.2003.00331.x PMid:12871294

  • 18. Shivdasani R.A. Fujiwara Y. McDevitt M.A. Orkin S.H. (1997). A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16 (13): 3965–3973. https://doi.org/10.1093/emboj/16.13.3965 PMid:9233806 PMCid:PMC1170020

  • 19. Rozman C. Vives-Corrons J.L. (1981). On the alleged diagnostic significance of megakaryocytic “phagocytosis” (emperipolesis). Br J Haematol. 48 510. https://doi.org/10.1111/j.1365-2141.1981.tb02745.x PMid:7196253

  • 20. Tavassoli M. (1986). Modulation of megakaryocyte emperipolesis by phlebotomy: Megakaryocytes as a component of marrow-blood barrier. Blood Cells. 12 205-216. PMid:3790733

  • 21. Centurione L. Di Baldassarre A. Zingariello M. Bosco D. Gatta V. Rana R.A. Langella V. Di Virgilio A. Vannucchi A.M. Migliaccio A.R. (2004). Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood 104 (12):3573-3580. https://doi.org/10.1182/blood-2004-01-0193 PMid:15292068

  • 22. Lee K.P. (1989). Emperipolesis of hematopoietic cells within megakaryocytes in bone marrow of the rat. Vet Pathol. 26 473-478. https://doi.org/10.1177/030098588902600603 PMid:2603328

  • 23. Bobik R. Dabrowski Z. (1995). Emperipolesis of marrow cells within megakaryocytes in the bone marrow of sublethally irradiated mice. Ann Hematol. 70 (2):91-95. https://doi.org/10.1007/BF01834387 PMid:7880931

  • 24. De Pasquale A. Paterlini P. Quaglino D. Quaglino D. (1985). Emperipolesis ofgranulocytes within megakaryocytes. Br J Haematol. 60 384-386. https://doi.org/10.1111/j.1365-2141.1985.tb07429.x PMid:3859322

  • 25. Faree M. Afzal M. (2014). Evidence of inbreeding depression on height weight and body mass index: a population-based child cohort. Am J Hum Biol. 26 (6):784–795. https://doi.org/10.1002/ajhb.22599 PMid:25130378

  • 26. van Den Brandt J. Kovács P. Klöting I. (2000). Metabolic variability among disease-resistant inbred rat strains and in comparison with wild rats (Rattus norvegicus). Clin Exp Pharmacol Physiol. 27 (10):793-795. https://doi.org/10.1046/j.1440-1681.2000.03336.x PMid:11022971

Journal information
Impact Factor

CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 99 9
PDF Downloads 36 36 4