Development of Simple Multiplex Real-Time PCR Assays for Foodborne Pathogens Detection and Identification On Lightcycler

Open access

Abstract

Most acute intestinal diseases are caused by food-borne pathogens. A fast and simple real-time PCR-based procedure for simultaneous detection of food contamination by any of the five food-borne pathogens: Campylobacter jejuni, Mycobacterium bovis, Enterobacter sakazaki, Shigella boydii, Clostridium perfrigens using multiplex EvaGreen real-time PCR for LightCycler was developed and evaluated. Real-time qPCR showed excellent sensitivity. Tm calling and Melting Curve Genotyping (MCG) were used for analysis of PCR product melting curves. The Melting Curve Genotyping option showed good performance for discrimination of positive samples containing DNA of single pathogen or pathogen mixtures from negative samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fleckenstein JM. Bartels SR. Drevets PD. Bronze MS. Drevets DA. (2010). Infectious agents of food- and water-borne illnesses. Am J Med Sci 340(3): 238-246. https://doi.org/10.1097/MAJ.0b013e3181e99893

  • 2. Postollec F. Falentin H. Pavan S. Combrisson J. Sohier D. (2011). Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5): 848-861. https://doi.org/10.1016/j.fm.2011.02.008 PMid:21569926

  • 3. Severgnini M. Cremonesi P. Consolandi C. De Bellis G. Castiglioni B. (2011). Advances in DNA Microarray technology for the detection of foodborne pathogens. Food Bioproc Tech 4 936-953. https://doi.org/10.1007/s11947-010-0430-5

  • 4. Jošić D. Petković J. Bunčić O. Lepšanović Z. Pivić R. Rašić Z. Katić V. (2016). Typing of indigenous Campylobacter spp. from Serbia by M-PCR and RAPD. Acta Veterinaria-Beograd 66 (2): 203-213. https://doi.org/10.1515/acve-2016-0017

  • 5. Fukushima H. Katsube K. Hata Y. Kishi R. Fujiwara S. (2007). Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol 73(1): 92-100. https://doi.org/10.1128/AEM.01772-06 PMid:17056684 PMCid:PMC1797114

  • 6. Fukushima H. Kawase J. Etoh Y. Sugama K. Yashiro S. Iida N. Yamaguchi K. (2010). Simultaneous screening of 24 target genes of foodborne pathogens in 35 foodborne outbreaks using multiplex real-time SYBR green PCR analysis. International Journal of Microbiology 12010 Article ID 864817 18 pages. https://doi.org/10.1155/2010/864817

  • 7. Zhao X. Lin C-W. Wang J. Oh D.H. (2014). Advances in rapid detection methods for foodborne pathogens. J.Microbiol.Biotechnol 24(3): 297-312. https://doi.org/10.4014/jmb.1310.10013 PMid:24375418

  • 8. Binnicker MJ. (2015). Multiplex molecular panels for diagnosis of gastrointestinal infection: performance result interpretation and costeffectiveness. J.Clin.Microbiol. 533723-3728. https://doi.org/10.1128/JCM.02103-15

  • 9. Cremonesi P. Pisani L. F. Lecchi C. Ceciliani F. Martino P. Bonastre A. S. Karus A. Balzaretti C. Castiglioni B. (2014). Development of 23 individual TaqMan® real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions. Food Microbiol 43 35 - 40. https://doi.org/10.1016/j.fm.2014.04.007 PMid:24929880

  • 10. Amagliani G. Omiccioli E. Campo A. Bruce IJ. Brandi G. Magnani M. (2006). Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J Appl Microbiol. 100(2): 375-383. https://doi.org/10.1111/j.1365-2672.2005.02761.x PMid:16430514

  • 11. Justé A. Thomma BP. Lievens B. (2008). Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 25(6): 745-761. https://doi.org/10.1016/j.fm.2008.04.009 PMid:18620966

  • 12. Elizaquível P. Aznar R. (2008). A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7 Salmonella spp. and Staphylococcus aureus on fresh minimally processed vegetables. Food Microbiol. 25(5): 705-713. https://doi.org/10.1016/j.fm.2008.03.002 PMid:18541170

  • 13. Kawasaki S. Fratamico PM. Horikoshi N. Okada Y. Takeshita K. Sameshima T. Kawamoto S. (2010). Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species Listeria monocytogenes and Escherichia coli O157:H7 in ground pork samples. Foodborne Pathog Dis. 7(5): 549-554. https://doi.org/10.1089/fpd.2009.0465 PMid:20132032

  • 14. Omiccioli E. Amagliani G. Brandi G. Magnani M. (2009). A new platform for Real- Time PCR detection of Salmonella spp. Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol. 26(6): 615-622. https://doi.org/10.1016/j.fm.2009.04.008 PMid:19527837

  • 15. Suo B. He Y. Tu SI. Shi X. (2010). A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp. Escherichia coli O157 and Listeria monocytogenes in meat products. Foodborne Pathog Dis. 7(6): 619-628. https://doi.org/10.1089/fpd.2009.0430 PMid:20113204

Search
Journal information
Impact Factor


CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 440 282 4
PDF Downloads 172 120 3