Hematological Importance of Pseudoeosinophilic Granulocytes in Acclimation of Common Carp (Cyprinus Carpio Linnaeus, 1758)

Open access

Abstract

Adaptation mechanisms as response to water content, oxygen level and pollutants are very important and they can be interpreted by hematological analysis. The aim of this study was the analysis of hematological and immune adaptations of common carp (Cyprinus carpio Linnaeus, 1758) to thermal stress. All specimens were divided into a control and experimental group. The control group of fish was exposed to a constant water temperature of 10°C. We induced thermal stress in experimental fish by gradually heating water to 28°C, held for 30 minutes and then comparing the obtained results with the control fish. Short-term hyperthermia lead to an increase of the number of leukocytes, especially pseudoeosinophilic granulocytes and monocytes, while the number of neutrophils and lymphocytes was reduced. The analysis of the leukocyte number and differential blood count in the control group showed high individual variation of segmented granulocytes, monocytes and pseudoeosinophilic granulocytes. Statistically significant differences (p=0.00) were found for the white blood cells, nonsegmented neutrophils and pseudoeosinophils between the control and experimental group. The experimental group of males had an increased number of white blood cells, monocytes and pseudoeosinophils, where significant differences were found for nonsegmented and total neutrophils and also for pseudoeosinophils (p=0.00), lymphocytes (p=0.01) and monocytes (p=0.03). Females had an increased total number of white blood cells, lymphocytes, monocytes and pseudoeosinophils, while significant differences (p=0.00) were obtained in the number of white blood cells, nonsegmented and total neutrophils and pseudoeosinophils between the control and experimental group. Adaptation mechanisms in carp after water temperature heating are mostly reflected in the increase of pseudoeosinophils and the decrease of neutrophils.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pickering A. D. (1993). Endocrine-induced pathology in stressed salmonid fish. Fish Res. 17 35-50. http://dx.doi.org/10.1016/0165-7836(93)90005-R

  • 2. Everly G.S. Lating J.M. (2013). A clinical guide to the treatment of the human stress response (pp. 250-286). USA: Springer science & Business media. http://dx.doi.org/10.1007/978-1-4614-5538-7

  • 3. Iwama G.K. Morgan J.D. Barton B.A. (1995). Simple field methods for monitoring stress and general condition of fish. Aqua Res. 26 (4): 273-282. http://dx.doi.org/10.1111/j.1365-2109.1995.tb00912.x

  • 4. Kazlauskiene N. Vosyliene M.Z. (2004). Physiological state of Atlantic salmon (Salmo salar Linnaeus 1758) and sea trout (Salmo trutta trutta Linnaeus 1758.). Acta Zool Lith. 14(4): 48-51.

  • 5. Mitrašinović M. Suljević D. (2009). Hematological status of chub fish Leuciscus cephalus (Linnaeus 1758.) from Krupica and Zeljeznica rivers. Veterinaria 58(1-2): 63-76.

  • 6. Kroupova H. Machova J. Svobodova Z. (2005). Nitrite influence on fish: a review. Vet Med-Czech. 50 461-471.

  • 7. Ritossa F.M. (1962). A new puffing pattern induced by a temperature shock and DNP in Drosophila. Exp Biol. 18 571-573. http://dx.doi.org/10.1007/bf02172188

  • 8. Blank M. Khorkova O. Goodman R. (1994). Changes in polypeptide distribution stimulated by different levels of Em and thermal stress. Biochem Bioenerg. 17 349-360. http://dx.doi.org/10.1016/0302-4598(87)80045-4

  • 9. Samali A. Cotter T.G. (1996). Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 223(1): 163-170. http://dx.doi.org/10.1006/excr.1996.0070PMid:8635489

  • 10. Samali A. Holmberg C.I. Sistonen L. Orrenius S. (1999). Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS Lett. 461(3): 306-310. http://dx.doi.org/10.1016/S0014-5793(99)01486-6

  • 11. Samali A. Orrenius S. (1998). Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chap. 3(4): 228-236. PMCid:PMC312968

  • 12. Ellis A.E. (1977). Leukocytes in fish. J Fish Biol. 11 453-491. http://dx.doi.org/10.1111/j.1095-8649.1977.tb04140.x

  • 13. Tavares-Dias M. Barcellos J.F.M. (2005). Peripheral blood cells of the armored catfish Hoplosternum littorale Hancock: a morphological and cytochemistry study. Braz J Morphol Sci. 22 215-220.

  • 14. Tavares-Dias M. Moraes F.R. (2004). Hematologia de peixes teleosteos. Ribeirão Preto. 1 144.

  • 15. Lin S. (2001). Zebrafish hematopoietic development. In: Hematopoiesis: L.I. Zon (Ed.) Hematopoiesis: A Developmental Approach (pp. 149-151). USA: Oxford University Press.

  • 16. Kapoor B.G. Khanna B. (2014). Ichthyology handbook (pp. 1-35). USA: Alpha Science International.

  • 17. Karalija E. (2007). Leukocyte formula of European chub (Leuciscus cephalus Linnaeus 1758) in seasonal aspect. (Master thesis). Sarajevo (B&H): University of Sarajevo.

  • 18. Velagić E. (2013). The effects of thermal stress on morphologic erithrocytes parameters and percentage presence of blood elements in Prussian carp (Carassius gibelio Bloch 1782) (Master thesis). Sarajevo (B&H): University of Sarajevo.

  • 19. Suljević D. Mitrašinović M. (2009). Effects of thermal stress on glucose level in serum of carp and crucian carp. Veterinaria 58(3-4): 201-209.

  • 20. Standard Methods for the Examination of Water and Wastewater. (1975). 14th Edition (p 410). Method 418A and 418B

  • 21. Hasković E. Mehinović L. Suljević D. Hasković D. Hajdarević E. Glamuzina B. (2013). Differential blood count of tench (Tinca tinca Linnaeus 1758) in conditions of thermal stress. Veterinaria. 62(3-4): 175-184.

  • 22. Gladden J.N. Brainard B.M. Shelton J.L. Camus A.C. Divers S.J. (2010). Evaluation of isoeugenol for anesthesia in koi carp (Cyprinus carpio). Am J Vet Res. 71(8): 859-66. PMid:20673083 http://dx.doi.org/10.2460/ajvr.71.8.859

  • 23. Kekic H. Ivanc A. (1982). A new direct method for counting fish blood cells. Ichtiology. 14(1): 55-58.

  • 24. Đikić D. Lisičić D. Skaramuca D. Matić-Skoko S. Tutman P. Benković V. Horvat Knežević A. Gavrilović A. Skaramuca B. (2011). Blood cellular components in wild caught Muraena helena L. 1758. Cybium. 35(2): 149-156.

  • 25. Harris J. Bird D.J. (2000). Modulation of the fish immune system by hormones. Vet Immun Immunopath. 77 163-176. http://dx.doi.org/10.1016/S0165-2427(00)00235-X

  • 26. Tavares-Dias M. (2006). A morphological and cytochemical study of erythrocytes trombocytes and leucocytes on four freshwater teleosts. J Fish Biol. 2 155-157. http://dx.doi.org/10.1111/j.1095-8649.2006.01089.x

  • 27. Reid S.G. Vijayin M.M. & Perry S.F. (1996). Modulation of catecholamine storage and release by the pituitary-interrenal axis in the rainbow trout (Oncorhynchus mykiss). J Comp Physiol. 165 665-676. http://dx.doi.org/10.1007/BF00301135

  • 28. Cortes R. Teles M. Tridico R. Acerete L. Tort L. (2013). Effects of Cortisol Administered through Slow-Release Implants on Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss). Int J Genom. doi:

    • Crossref
    • Export Citation
  • 29. Engelsma M.Y. Hougee S. Nap D. Hofenk M. Rambout J. Van Muisvinkel W. Verburg-van Kemenade V. (2003). Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp Cyprinus carpio L. Fish Shellfish Immun. 15 397-410. http://dx.doi.org/10.1016/S1050-4648(03)00006-8

Search
Journal information
Impact Factor


CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 83 4
PDF Downloads 82 56 5