The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

Martin Morovic 1 , Matej Murin 1 , Frantisek Strejcek 1 , Michal Benc 1 , Dusan Paál 1 , Olga Østrup 2 , Heiner Niemann 3 , Lazo Pendovski 4 , and Jozef Laurincik 1
  • 1 Constantine the Philosopher University in Nitra, , Slovakia
  • 2 Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Denmark
  • 3 Institute of Farm Animal Genetics (FLI), , Germany
  • 4 Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Macedonia (the former Yugoslav Republic of)

Abstract

One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early embryonic stages of interspecies (bovine, porcine) nuclear transfer embryos (iSCNT) by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA) in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly influenced by the ooplasmic environment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development 16, 6-21. http://dx.doi.org/10.1101/gad.947102 PMid:11782440

  • 2. Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics 3, 662–673. http://dx.doi.org/10.1038/nrg887 PMid:12209141

  • 3. Fulka, H., St John, J.C., Fulka, J., Hozak, P. (2008). Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 76, 3-14. http://dx.doi.org/10.1111/j.1432-0436.2007.00247.x PMid:18093226

  • 4. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., Reik, W. (2001). Conservation of methylatio reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA 98, 13734-13738. http://dx.doi.org/10.1073/pnas.241522698 PMid:11717434 PMCid:PMC61110

  • 5. Deshmukh, R.S., Østrup, O., Østrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., Hyttel, P. (2011). DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6 (2): 177-187. http://dx.doi.org/10.4161/epi.6.2.13519 PMid:20935454

  • 6. Seisenberger, S., Peat, J.R., Hore, T.A., Santos, F., Dean, W., Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 368(1609): 20110330. http://dx.doi.org/10.1098/rstb.2011.0330 PMid:23166394 PMCid:PMC3539359

  • 7. Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics 9, 2395-2402. http://dx.doi.org/10.1093/hmg/9.16.2395 PMid:11005794

  • 8. Chen, T., Li, E. (2004). Structure and function of eukaryotic DNA methyltransferases. Current Topics in Developmental Biology 60, 55-89. http://dx.doi.org/10.1016/S0070-2153(04)60003-2

  • 9. Howell, C. Y., Bestor, T. H., Ding, F. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–38. http://dx.doi.org/10.1016/S0092-8674(01)00280-X

  • 10. Smallwood, S. A., Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends in Genetics 28 (1): 33-42. http://dx.doi.org/10.1016/j.tig.2011.09.004 PMid:22019337

  • 11. Holker, M., Petersen, B., Hassel, P. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning and Stem Cells 7, 35–44. http://dx.doi.org/10.1089/clo.2005.7.35 PMid:15996116

  • 12. Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Chung, A.S., Lee, K.K., Han, Y.M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nature Genetics 28, 173–177. http://dx.doi.org/10.1038/88903 PMid:11381267

  • 13. Zhao, J., Whyte, J., Prather, R.S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell and Tissue Research 341, 13-21. http://dx.doi.org/10.1007/s00441-010-1000-x PMid:20563602

  • 14. Denomme, M.M., Mann, M.R.W. (2013). Maternal control of genomic imprint maintenance. Reproductive Biomedicine Online 27 (6): 629-636. http://dx.doi.org/10.1016/j.rbmo.2013.06.004 PMid:24125946

  • 15. Sawai, K., Takahashi, M., Moriyasu, S., Hirayama, H., Minamihashi, A., Hashizume, T., Onoe, S. (2010). Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cellular Reprogramming 12 (1): 15-22. http://dx.doi.org/10.1089/clo.2009.0039 PMid:19780699

  • 16. Okano, M., Bell, D., Haber, D., Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6

  • 17. Vassena, R., Dee Schramm, R., Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preomplantation embryos. Molecular Reproduction and Development 72, 430-436. http://dx.doi.org/10.1002/mrd.20375 PMid:16155959

  • 18. Bortvin, A., Eggan, K., Skaletsky, H., Akutsu, H., Berry, D. L., Yanagimachi, R., Page, D. C., Jaenisch, R. (2003). Incomplete reactivation of Oct4 related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680. http://dx.doi.org/10.1242/dev.00366 PMid:12620990

  • 19. Golding, M. C., Westhusin, M. E. (2003). Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene Expression Patterns 3, 551–558. http://dx.doi.org/10.1016/S1567-133X(03)00121-2

  • 20. Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A. Jr., Sirisathien, S., Brackett, B., Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in preimplantation bovine embryos. Human Reproduction 16, 893-901. http://dx.doi.org/10.1093/humrep/16.5.893 PMid:11331635

  • 21. Zhu, H., Craig, J. A., Dyce, P. W., Sunnen, N., Li, J. (2004). Embryos derived from porcine skin-derived stem cells exhibit enhanced preimplantation development. Biology of Reproduction 71, 1890–1897. http://dx.doi.org/10.1095/biolreprod.104.032227 PMid:15306555

  • 22. Kumar, B. M., Jin, H. F., Kim, J. G., Ock, S. A., Hong, Y., Balasubramanian, S., Choe, S. Y., Rho, G. J. (2007). Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Developmental Dynamics 236 (2): 435-446. http://dx.doi.org/10.1002/dvdy.21042 PMid:17191234

  • 23. Østrup, O., Strejcek, F., Petrovicova, I., Hahn, A. L., Morovic, M., Lemme, E., Petersen, B., Laurincikova, N., Niemann, H., Laurincik, J., Hyttel, P. (2011). Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle. Cellular Reprogramming 13 (2): 145-155. http://dx.doi.org/10.1089/cell.2010.0061 PMid:21473691

  • 24. Do, V.H., Taylor-Robinson, A.W. (2014). Somatic cell nuclear transfer in mammals: Reprogramming mechanism and factors affecting success. Cloning and Transgenesis 3 (3): 1-5.

OPEN ACCESS

Journal + Issues

Search