Influence of Meat Type, Sex and Storage Time on Fatty Acid Profile of Free Range Dalmatian Turkey

Open access


Dalmatian turkey is a slow growing breed kept in free range systems. It is a type of “old fashioned poultry” whose meat is present on the market and accepted by consumers. However, no information about its meat quality and fatty acid profile is available. The chemical composition of the meat was influenced by gender and meat type and these differences could be important from the consumer’s point of view. Fatty acid composition was characterized by the predominance of n6 fatty acids, especially C18:2n6 and a high n6/n3 ratio. Increased time of storage strongly reduced the long chain polyunsaturated fatty acid (LC PUFA) and increased atherogenicity and thrombogenicity indices (AI and TI) in thigh tissue. The content of beneficial n3 PUFA was influenced by meat type, with lower values of C18:3n3 and higher values of LC PUFA in the breast compared to the thighs. The potential intake of LC PUFA of comercial turkey in the human diet was lower in comparison to poultry fed with complete feed mixtures. An interesting fact was the higher DHA values in comparison with DPA values in breast tissue, which is characteristic of old poultry breeds. The Dalmatian turkey is a highly valued traditional product and an important archaic breed for gene preservation and biodiversity. Nevertheless, Dalmatian turkey meat could be even further improved by minimal dietary manipulation to become a product with additional health promoting effects.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ferreira M. M. C. Morgano M. A. De Queiroz S. C. D. N. Mantovani D. M. B. (2000). Relationships of the minerals and fatty acid contents in processed turkey meat products. Food Chem. 69 259-265.

  • 2. Baggio S.R. Miguel A. M. R. Bragagnolo N. (2005). Simultaneous determination of cholesterol oxides cholesterol and fatty acids in processed turkey meat products. Food Chem. 89 475-484.

  • 3. Castellini C. Mugnai C. Dal Bosco A. (2002). Effect of organic production system on broiler carcass and meat quality. Meat Sci. 60 219–225.

  • 4. Sarica M. Ocak N. Turhan S. Kop C. Yamak U. S. (2011). Evaluation of meat quality from 3 turkey genotypes reared with or without outdoor access. Poult. Sci. 90 (6): 1313–1323. PMid:21597073

  • 5. Starcevic K. Masek T. Brozic D. Filipovic N. Stojevic Z. (2014). Growth performance serum lipids and fatty acid profile of different tissues in chicken broilers fed a diet supplemented with linseed oil during a prolonged fattening period. Vet. Arhiv. 84 75-84.

  • 6. Carrillo-Dominguez S. Carranco-Jauregui M. E. Castillo-Dominguez R. M. Castro-Gonzalez M. I. Avila-Gonzalez E. Perez-Gil F. (2005). Cholesterol and n-3 and n-6 fatty acid content in eggs from laying hens fed with red crab meal (pleuroncodes planipes). Poult. Sci. 84 167-172. PMid:15685957

  • 7. Bou R. Guardiola F. Tres A. Barroeta A. C. Codony R. (2004). Effect of dietary fish oil α-tocopheryl acetate and zinc supplementation on the composition and consumer acceptability of chicken meat. Poult. Sci. 83 282-292. PMid:14979581

  • 8. Ekert Kabalin A. Menčik S. Ostović M. Štoković I. Grgas A. Horvath Š. Balenović T. Sušić V. Karadjole I. Pavičić Ž. (2012). Morphological characteristics of Dalmatian turkey. Mac. J. Anim. Sci. 2 277–280.

  • 9. Ekert Kabalin A. Menčik S. Štoković I. Horvath Š. Grgas A. Balenović T. Sušić V. Karadjole I. Ostović M. Pavičić Ž. Marković D. Marguš D. (2009). Future of dalmatian turkey - traditional local form of poultry in Croatia. Proc. 60th Annual Meeting of the European Association for Animal Production. Augusut 24-27 (p. 15) Barcelona Spain.

  • 10. Santos-Filho J. M. Morais S. M. Rondina D. Beserra F. J. Neiva J. N. M. Magalhaes E. F. (2005). Effect of cashew nut supplemented diet castration and time of storage on fatty acid composition and cholesterol content of goat meat. Small Ruminant Res. 57 51-56.

  • 11. Hahn G. Spindler M. (2002). Method of dissection of turkey carcases. World Poul. Sci. J. 58 (1) : 179-197.

  • 12. Jensen J. F. (1983). Method of dissection of broiler carcasses and description of parts. pp.32 World’s Poultry Science Association European Federation Working Group V Copenhagen.

  • 13. AOAC (1999). Official methods of analysis of the AOAC international. Association of Official Analytical Chemists Arlington VA.

  • 14. Folch J. Lees M. Stanley G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226 497-509. PMid:13428781

  • 15. Ulbricht T. L. V. Southgate D. A. T. (1991). Coronary heart disease: Seven dietary factors. Lancet 338 985-992.

  • 16. Werner C. Riegel J. Wicke M. (2008). Slaughter performance of four different turkey strains with special focus on the muscle fiber structure and the meat quality of the breast muscle. Poult. Sci. 87 1849-1859. PMid:18753454

  • 17. Sarica M. Ocak N. Karacay N. Yamak U. Kop C. Altop A. (2009). Growth slaughter and gastrointestinal tract traits of three turkey genotypes under barn and free-range housing systems. Brit. Poult. Sci. 50 487-494. PMid:19735018

  • 18. Herendy V. Sütő Z. Horn P. (2003). Characteristics of improvement in the turkey production in the last 30 years. Agric. Conspec. Sci. 68 127-131.

  • 19. Simopoulos A.P. (2013). Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome brain metabolic abnormalities and non-alcoholic fatty liver disease. Nutrients 5 2901-2923. PMid:23896654 PMCid:PMC3775234

  • 20. Komprda T. Sarmanova I. Zelenka J. Bakaj P. Fialova M. Fajmonova E. (2002). Effect of sex and age on cholesterol and fatty acid content in turkey meat. Arch. Geflugelkd. 66 263-273.

  • 21. Givens D. I. Gibbs R. A. Rymer C. Brown R. H. (2011). Effect of intensive vs. free range production on the fat and fatty acid composition of whole birds and edible portions of retail chickens in the UK. Food Chem. 127 1549-1554.

  • 22. Soyer A. Özalp B. Dalmıs Ü. Bilgin V. (2010). Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 120 1025–1030.

  • 23. Asghar A. Gray J. L. Buckley A. M. Pearson A. M. Booren A. M. (1988). Perspectives on warmed-over-flavor. Food Techn. 42 102–108.

  • 24. Verardo V. Ferioli F. Riciputi Y. Iafelice G. Marconi E. Caboni M. F. (2009). Evaluation of lipid oxidation in spaghetti pasta enriched with long chain n-3 polyunsaturated fatty acids under different storage conditions. Food Chem. 114 472–477.

  • 25. López-Ferrer S. Baucells M. D. Barroeta A. C. Galobart J. Grashorn M. A. (2001). n-3 Enrichment of Chicken Meat. 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed oil. Poul. Sci. 80 753–761.

  • 26. Givens D. I. Gibbs R. A. (2006). Very long chain n-3 polyunsaturated fatty acids in the food chain in the uk and the potential of animal-derived foods to increase intake. Nutr. Bull. 31 104-110.

  • 27. Wang Y. Lehane C. Ghebremeskel K. Crawford M. A. (2010). Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Pub. Health Nutr. 13 400-408. PMid:19728900

  • 28. Castroman G. Puerto M. D. Ramos A. Cabrera M. C. Saadoun A. (2013). Organic and conventional chicken meat produced in Uruguay: Colour ph fatty acids composition and oxidative status. Am. J. Food Nutr. 1 12-21.

  • 29. Mašek T. Starčević K. Filipović N. Stojević Z. D. Brozić D. Gottstein Z. Severin K. (2014). Tissue fatty acid composition and estimated Δ desaturase activity after castration in chicken broilers fed with linseed or sunflower oil. Anim. Physiol. Anim. Nut. 98 384-392. PMid:23905627

Journal information
Impact Factor

CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 119 4
PDF Downloads 89 53 2