Comparative Clinical and Haematological Investigations in Lactating Cows with Subclinical and Clinical Ketosis

Open access


Ketosis of lactating cows is among the most common metabolic diseases in modern dairy farms. The economic importance of the disease is caused by the reduced milk yield and body weight loss, poor feed conversion, lower conception rates, culling and increased mortality of affected animals. In the present study, a total of 47 high-yielding dairy cows up to 45 days in milk (DIM) are included. All animals were submitted to physical examination wich included checking the rectal body temperature, heart rate, respiratory and rumen contraction rates, and inspection of visible mucous coats. The body condition was scored, and blood β-hydroxybutyrate (BHBA) concentrations were assayed. The cows were divided into 3 groups: first group (control) (n=24) with blood β-hydroxybutyrate level <1.2 mmol/l, second group (n=15) with blood β-hydroxybutyrate between 1.2-2.6 mmol/l (subclinical ketosis) and third group (n=8) with blood β-hydroxybutyrate >2.6 mmol/l (clinical ketosis). Whole blood samples were obtained and analyzed for Red Blood Cell (RBC, 1012/l), Hemoglobin (HGB, g/l), Hematocrit (HCT, %), Mean Corpuscular Volume (MCV, fl), Mean Corpuscular Hemoglobin (MCH, pg), Mean Corpuscular Hemoglobin Concentration (MCHC, g/l), White Blood Cell (WBC, 109/l), Lymphocytes (LYM, 109/l), Monocytes (MON, 109/l), Granulocytes (GRA, 109/l), Red Blood Distribution Width (RDW, %), Red Blood Cell Distribution Width Absolute (RDWa, fl), Platelets (PLT, 109/l) and Mean Platelet Volume (MPV, fl). In this study, deviations in the clinical parameters in the control group and in those with subclinical ketosis were not identified. The cows from the third group (clinical ketosis) exhibited hypotonia, anorexia and body weight loss vs. control group. Hematological analysis showed leukocytosis and lymphocytosis in cows with subclinical ketosis vs. control group. In cows with clinical ketosis WBC counts decreased (leukopenia), while hemoglobin content and hematocrit values are higher vs. control group. Blood BHBA values are higher in both groups of ketotic cows vs. the control group. The other analyzed parameters (RBC, MCH, MCHC, MCV, RDW, RDWa, MON, GRA, PLT and MPV) were close to control values.

1. Bell, A.W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73, 2804-2819. PMid:8582872

2. Oetzel, G.R. (2004). Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am. Food Anim. Pract. 20, 651-674. PMid:15471629

3. Kirovski, D., Šamanc, H., Cernescu, H., Jovanović, M., Vujanac, I. (2008). Fatty liver incidence on dairy cow farms in Serbia and Romania. International Symposium New Researches in Biotechnology”, Romania, Buchurest, November 20th to 21st, Biotechnology, series F, special volume.

4. Radostis, O.M., Gay, C.C., Blood, D.C., Hinchcliff, K.W. (2000). Ketosis of ruminants. In: Radostits OM, DC Blood and CC Gay (Eds). Veterinary medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses. (pp. 1452-1462). 9th Edition. London: Sounders Company.

5. Nogalski, Z., Górak, E. (2008). Effects of the body condition of heifers at calving and at the first stage of lactation on milk performance. Med. Weter. 64, 322-326.

6. Duffield, T.F., Kelton, D.F., Leslie, K.E., Lissemore, K.D., Lumsden, J.H. (1997). Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 38, 713-718. PMid:9360791 PMCid:PMC1576823

7. McArt, J.A., Nydam, D.V., Oetzel, G.R. (2013). Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. J. Dairy Sci. 96, 198-209. PMid:23102961

8. Whitaker, D.A., Smith, E.J., da Rosa, G.O., Kelly, J.M. (1993). Some effects of nutrition and management on the fertility of dairy cattle. Vet. Rec. 133, 61-64. PMid:8212484

9. Walsh, R., LeBlanc, S., Duffield, T., Leslie, K. (2004). Retrospective analysis of the association between subclinical ketosis and conception failure in Ontario dairy herds. Proc. World Buiatrics Congress / Med. Vet. Quebec, 34-152.

10. Suriyasathaporn, W., Heuer, C., Noordhuizen-Stassen, E.N., Schukken, Y.H. (2000). Hyperketonemia and udder defense: a review. Vet. Res. 31, 397-412. PMid:10958241

11. LeBlanc, S.J., Leslie, K.E., Duffield, T.F. (2005). Metabolic predictors of displaced abomasum in dairy cattle. J. Dairy Sci. 88, 159-170.

12. Duffield, T.F., Lissemore, K.D., McBride, B.W., Leslie, K.E. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 92, 571-580. PMid:19164667

13. Meglia, G.E., Johannisson, A., Petersson, L., Persson Waller, K. (2001). Changes in some blood micronutritiens, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet. Scand. 42, 139-150. PMid:11455894 PMCid:PMC2202342

14. Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R. (2010). Associations of elevated non-esterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci. 93, 1596-1603. PMid:20338437

15. Hungerford, T.G. (1990). Diseases of cattle. In: Diseases of livestock, 9th Edition (pp. 34-347).

16. Oetzel, G.R. (2007). Herd-level ketosis - diagnosis and risk factors. Preconference seminar 7C: Dairy herd problem investigation strategies: transition cow troubleshooting American association of bovine practitioners, 40th Annual Conference, September 19, 2007 - Vancouver, BC, Canada

17. Waltner, S.S., McNamara, J.P., Hillers, J.K. (1993). Relationships of body condition score to production variables in high producing Holstein cows. J. Dairy Sci. 76, 3410-3419.

18. Bewley, J.M., Schutz, M.M. (2008). Review: An interdisciplinary review of body condition scoring for dairy cattle. Professional Animal Scientist 24, 507-529.

19. Garnsworthy, P. (2008). Influences of body condition on fertility and milk yield. In: Proc dairy cattle reproduction council convention, 63-72.

20. Skidmore, A.L., Peeters, K.A.M., Sniffen, C.J., Brand, A. (2001). Monitoring dry period management. In: Brand, A., Noordhuizen, J. P. T. M., Schukken, Y. H. (Eds.), Herd Health and Production Management in Dairy Practice. (pp. 171-201). Wageningen Press

21. Gillund, P., Reksen, O., Grohn, Y.T., Karlberg, K. (2001). Body condition related to ketosis and reproductive performance in Norwegian dairy cows. J. Dairy Sci. 84, 1390-1396.

22. Găvan, C., Retea, C., Motorga, V. (2010). Changes in the hematological profile of Holstein primiparous in periparturient period and in early to mid-lactation. Animal Sciences and Biotechnologies 43, 244-246.

23. Duffield, T.F. (2004). Monitoring strategies for metabolic disease in transition dairy cows. IVIS, 23rd WBC Congress, Québec, Canada.

24. Goldhawk, C., Chapinal, N., Veira, D.M., Weary, D.M., Keyserlingk, von M.A.G. (2009). Prepartum feeding behavior is an early indicator of subclinical ketosis. J. Dairy Sci. 92, 4971-4977. PMid:19762814

25. Kinoshita, A., Wolf, C., Zeyner, A. (2010). Studies on the incidence of hyperketonemia with and without hyperbilirubinaemia in cows in Mecklenburg- Vorpommern (in Germany) in the course of the year. Tieraerztliche Praxis 38, 7-15.

26. Seifi, H.A., LeBlanc, S.J., Leslie, K.E., Duffield, T.F. (2011). Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J. 188, 216-220. PMid:20457532

27. Geishauser, T., Leslie, K., Tenhag, J., Bashiri, A. (2000). Evaluation of eight cowside ketone tests in milk for detection of subclinical ketosis in dairy cows. J. Dairy Sci. 83, 296-299.

28. Binev, R., Marutsova, V., Radev, V. (2014). Clinical and haematological studies on subclinical lactational ketosis in dairy goats. Agricultural Science and Technology 6, 427−430.

29. Andrews, A.H., Blowey, R.W., Boyd, H., Eddy, R.G. (2004). Bovine Medicine Diseases and Husbandry of Cattle. Second edition. USA: Blackwell Publishing Company.

30. González, F.D., Mui-o, R., Pereira, V., Campos, R., Benedito, J.L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Dairy Sci. 12, 251-255.

31. Suthar, V.S., Canelas-Raposo, J., Deniz, A., Heuwieser, W. (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 96, 2925-2938. PMid:23497997

32. Edmonson, A.J., Lean, I.J., Weaver, L.D., Farver, T., Webster, G. (1989). A body condition chart for Holstein dairy cows. J. Dairy Sci. 72, 68-78.

33. LeBlanc, S. (2010). Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 56, 29-35.

34. Grummer, R.R. (1993). Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76, 3882-3896.

35. López-Gatius, F., Santolaria, P., Yaniz, J., Rutllant, J., López-Béjar, M. (2002). Factors affecting pregnancy loss from gestation day 38 to 90 in lactating dairy cows from a single herd. Theriogenology 57, 1251-1261.

36. Ruegg, P.L., Milton, R.L. (1995). Body condition scores of Holstein cows on Prince Edward Island, Canada: relationship with yield, reproductive performance, and disease. J. Dairy Sci. 78, 552-564.

37. Markusfeld, O., Galon, N., Ezra, E. (1997). Body condition score, health, yield and fertility in dairy cows. Vet. Rec. 141, 67-72. PMid:9257435

38. Sahinduran, S., Sezer K., Buyukoglu T., Albay M.K., Karakurum M.C. (2010). Evaluation of some haematological and biochemical parameters before and after treatment in cows with ketosis and comparison of different treatment methods. J. Anim. Vet. Adv. 9, 266-271.

39. Belić, B., Cincović, M.R., Stojanović, D., Kovačević, Z., Vidović, B. (2010). Morphology of erythrocyte and ketosis in dairy cows with different body condition. Contemporary agriculture 59, 306-311.

40. Sandev, N., Ilieva, D., Sizov, I., Rusenova, N., Iliev, E. (2006). Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004. Vet. Arhiv 76, 263-268.

41. Hoeben, D., Heyneman, R., Burvenich, C. (1997). Elevated levels of beta-hydroxybutyric acid in periparturient cows and in vitro effect on respiratory burst activity of bovine neutrophils. Vet. Immunol. Immunopathol. 58, 165-170.

42. Hoeben, D., Burvenich, C., Massart-Leen, A.M., Lenjou, M., Nijs, G., Van Bockstaele, D. (1999). In vitro effect of ketone bodies, glucocorticosteroids and bovine pregnancy-associated glycoprotein on cultures of bone marrow progenitor cells of cows and calves. Vet. Immunol. Immunopathol. 68, 229-240.

43. Suriyasathaporn, W., Daemen, A.J., Noordhuizen- Stassen, E.N., Dieleman, S.J., Nielen, M., Schukken, Y.H. (1999). Beta-hydroxybutyrate levels in peripheral blood and ketone bodies supplemented in culture media affect the in vitro chemotaxis of bovine leukocytes. Vet.Immunol. Immunopathol. 68, 177-186.

44. Cincović, R.M., Belić, B., Radojičić, B., Hristov, S., Đoković, R. (2012). Infl uence of lipolysis and ketogenesis to metabolic and hematological parameters in dairy cows during periparturient period. Acta Vet. 62, 429-444.

45. Belić, B., Cincović, M. R., Krčmar, Lj., Vidović, B. (2011). Reference values and frequency distribution of hematological parameters in cows during lactation and in pregnancy. Contemporary agriculture 60, 145-151.

46. Burton, J.L., Madsen, S.A., Chang, L.C., Weber, P.S., Buckham, K.R, Van Dorp, R., Hickey, M.C., Earley, B. (2005). Gene expression signatures in neutrophils exposed to glucocorticoids: A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet. Immunol. Immunopathol. 105, 197-219. PMid:15808301

47. Hefnawy, A.E., Shousha, S., Youssef, S. (2011). Hematobiochemical profile of pregnant and experimentally pregnancy toxemic goats. J. Basic. Appl. Chem. 1, 65-69.

48. Wyle, F.A., Kent, J.R. (1977). Immunosuppression by sex steroid hormones. Clin. Exp. Immunol. 27, 407. PMid:862230 PMCid:PMC1540928

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

Journal Information

CiteScore 2017: 0.32

SCImago Journal Rank (SJR) 2017: 0.195
Source Normalized Impact per Paper (SNIP) 2017: 0.387


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 15
PDF Downloads 38 38 7