Cite

Indium (0.038 at.%) and gallium (0.042 at.%) doped ZnO ceramics were prepared by hot pressing. Ceramics were investigated to determine their structural and mechanical characteristics for the prospective use in scintillators. Based on results of nanoindentation, atom force and scanning electron microscopy as well as energy dispersive X-ray spectra measurements, locations of gallium within grain, indium at grain boundaries (GBs) and their different effect on the mechanical properties of ZnO ceramics were detected. Doping of gallium led to the increased modulus of elasticity in grain, decreased hardness near GBs, stabilization of micropores and brittle intercrystalline fracture mode. ZnO:In ceramic has modulus of elasticity and hardness values close to ZnO characteristics, the increased fracture toughness and some plasticity near GBs. Differences in the micromechanical properties of the ceramics correlate with the location of dopants. Results demonstrate that the ZnO:In ceramic has a greater stress relaxation potential than the ZnO:Ga.

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics