The Fabrication of Natural Zeolite Via Co-Precipitation Method as Cu, Pb and Zn Metal Absorbent

M. Sirait 1 , K.Sari Dewi Saragih 1 , Nurfajriani 2  and S. Gea 3
  • 1 Department of Physics, Faculty of Mathematics and Natural Sciences, 20221, Medan, Indonesia
  • 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, 20221, Medan, Indonesia
  • 3 Department of Chemistry, Faculty of Mathematics and Natural Sciences, 20155, Medan, Indonesia

Abstract

Heavy metal waste is very dangerous, which can change the condition of water into a solid substance that can be suspended in water and can reduce the cleanliness level of water consumed by living things. To date, heavy metals can be managed through several processes, namely physics, biology or chemistry. One of the ways to overcome heavy metal pollution is to use natural zeolite applying a co-precipitation method, as it is known that zeolite is a powerful natural material to be used for certain purposes. In order to justify the research results, several analyses have been performed, such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Surface Area Analyser (SAA), and Atomic Adsorption Spectrophotometric (AAS). From the XRD results, it has been found out that the size of each zeolite with variations in size of 150 mesh, 200 mesh, and 250 mesh is 29.274 nm, 38.665 nm and 43.863 nm, respectively. Moreover, the SEM-EDX has shown that the zeolite under consideration is a type of Na-Zeolite and that the co-precipitation method successfully removes impurity elements, namely, Fe, Ti, and Cl. The results of SAA testing have indicated that the total surface area for each variation of zeolite sizes is 63.23 m2/g, 45.14 m2/g and 59.76 m2/g. The results of the AAS test analysis have demonstrated that the optimal absorption of metal content is observed in a size of 150 mesh zeolite with adsorption power of 99.6 % for Pb metal, 98 % for Cu metal, and 96 % Zn metal.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chu, W. L., Dang, N. L., Kok, Y. Y., Ivan Yap, K. S., Phang, S. M., & Convey, P. (2018). Heavy Metal Pollution in Antarctica and its Potential Impacts on Algae. Polar Science, 20, 75–83. https://doi.org/10.1016/j.polar.2018.10.004

  • 2. Harikrishnan, N., Ravisankar, R., Chandrasekaran, A., Suresh Gandhi, M., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2017). Assessment of Heavy Metal Contamination in Marine Sediments of East Coast of Tamil Nadu Affected by Different Pollution Sources. Marine Pollution Bulletin, 121 (1–2), 418–424. https://doi.org/10.1016/j.marpolbul.2017.05.047

  • 3. Mandich, M. (2018). Ranked Effects of Heavy Metals on Marine Bivalves in Laboratory Mesocosms: A Meta-Analysis. Marine Pollution Bulletin, 131 (Pt A), 773–781. https://doi.org/10.1016/j.marpolbul.2018.04.068

  • 4. Riani, E., Cordova, M. R., & Arifin, Z. (2018). Heavy Metal Pollution and its Relation to the Malformation of Green Mussels Cultured in Muara Kamal Waters, Jakarta Bay, Indonesia. Marine Pollution Bulletin, 133, 664–670. https://doi.org/10.1016/j.marpolbul.2018.06.029

  • 5. Lestari, D. Y. (2010). Kajian Modifikasi dan Karakterisasi Zeolit Alam dari Berbagai Negara. In Prosiding Seminar Nasional Kimia dan Pendidikan Kimia.

  • 6. Abou-Yousef, H., & Hassan, E. B. (2014). A Novel Approach to Enhance the Activity of H-Form Zeolite Catalyst for Production of Hydroxymethylfurfural from Cellulose. Journal of Industrial and Engineering Chemistry, 20 (4), 1952–1957. https://doi.org/10.1016/j.jiec.2013.09.016

  • 7. Ferreira, C., Araujo, A., Calvino-Casilda, V., Cutrufello, M. G., Rombi, E., Fonseca, A. M., & Neves, I. C. (2018). Y Zeolite-Supported Niobium Pentoxide Catalysts for the Glycerol Acetalization Reaction. Microporous and Mesoporous Materials, 271, 243–251. https://doi.org/10.1016/j.micromeso.2018.06.010

  • 8. Kim, J. Y., Heo, S., & Choi, J. W. (2018). Effects of Phenolic Hydroxyl Functionality on Lignin Pyrolysis over Zeolite Catalyst. Fuel, 232, 81–89. https://doi.org/10.1016/j.fuel.2018.05.133

  • 9. Yoshikawa, T., Umezawa, T., Nakasaka, Y., & Masuda, T. (2018). Conversion of Alkylphenol to Phenol via Transalkylation Using Zeolite Catalysts. Catalysis Today. https://doi.org/10.1016/j.cattod.2018.08.009

  • 10. Cortés-Arriagada, D., & Toro-Labbé, A. (2016). Aluminum and Iron Doped Graphene for Adsorption of Methylated Arsenic Pollutants. Applied Surface Science, 386, 84–95. https://doi.org/10.1016/J.APSUSC.2016.05.154

  • 11. Jabbari, V., Veleta, J. M., Zarei-Chaleshtori, M., Gardea-Torresdey, J., & Villagrán, D. (2016). Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity towards Organic Pollutants. Chemical Engineering Journal, 304, 774–783. https://doi.org/10.1016/J.CEJ.2016.06.034

  • 12. Lima, H. H. C., Maniezzo, R. S., Kupfer, V. L., Guilherme, M. R., Moises, M. P., Arroyo, P. A., & Rinaldi, A. W. (2018). Hydrochars Based on Cigarette Butts as a Recycled Material for the Adsorption of Pollutants. Journal of Environmental Chemical Engineering, 6 (6), 7054–7061. https://doi.org/10.1016/J.JECE.2018.11.012

  • 13. Liu, A., Wang, C.-Z., Chu, C., Chu, H.-Y., Chen, X., Du, A.-F., … & Wang, C.-C. (2018). Adsorption Performance toward Organic Pollutants, Odour Control and Anti-Microbial Activities of One Ag-Based Coordination Polymer. Journal of Environmental Chemical Engineering, 6 (4), 4961–4969. https://doi.org/10.1016/J.JECE.2018.07.035

  • 14. Martín, J., Orta, M. del M., Medina-Carrasco, S., Santos, J. L., Aparicio, I., & Alonso, E. (2018). Removal of Priority and Emerging Pollutants from Aqueous Media by Adsorption onto Synthetic Organo-Funtionalized High-Charge Swelling Micas. Environmental Research, 164, 488–494. https://doi.org/10.1016/J.ENVRES.2018.03.037

  • 15. Fedoročková, A., Hreus, M., Raschman, P., & Sučik, G. (2012). Dissolution of Magnesium from Calcined Serpentinite in Hydrochloric Acid. Minerals Engineering, 32, 1–4. https://doi.org/10.1016/j.mineng.2012.03.006

  • 16. Sabolová, V., Brinek, A., & Sládek, V. (2018). The Effect of Hydrochloric Acid on Microstructure of Porcine (Sus scrofa domesticus) Cortical Bone Tissue. Forensic Science International, 291, 260–271. https://doi.org/10.1016/j.forsciint.2018.08.030

  • 17. Zhu, K. R., Zhang, M. S., Hong, J. M., & Yin, Z. (2005). Size Effect on Phase Transition Sequence of TiO2 Nanocrystal. Materials Science and Engineering: A, 403 (1–2), 87–93. https://doi.org/10.1016/j.msea.2005.04.029

  • 18. Sau, T. K., & Rogach, A. L. (2012). Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications. Germany: Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/9783527652570

  • 19. Pauzan, M., Kato, T., Iwata, S., & Suharyadi, E. (2013). Pengaruh Ukuran Butir dan Struktur Kristal terhadap Sifat Kemagnetan pada Nanopartikel Magnetit (Fe3O4). Prosiding Pertemuan Ilmiah XXVII HFI Jateng & DIY, (ISSN : 08530823), 24–28.

  • 20. Yokoyama, M., Ohta, E., Sato, T., Komaba, T., & Sato, T. (1997). Size Dependent Magnetic Properties of Zinc Ferrite Fine Particles. Le Journal de Physique IV, 07(C1), C1-521-C1-522. https://doi.org/10.1051/jp4:19971212

  • 21. Asmin, L. O., Mutmainnah, & Suharyadi, E. (2015). Pengaruh Ukuran Partikel terhadap Struktural dan Sifat Kemagnetan Nanopartikel Zinc Ferrite (ZnFe2o4). Prosiding Simposium Fisika Nasional (SFN) XXVIII, 145–147. ISBN : 978-602-8161-87-9

OPEN ACCESS

Journal + Issues

Search