Electrochemical Detection of Small Volumes of Glyphosate with Mass-Produced Non-Modified Gold Chips

V. Mizers 1 , V. Gerbreders 1 , E. Sledevskis 1 , I. Kokina 1 , E. Tamanis 1 , M. Krasovska 1 , I. Mihailova 1 , A. Orugcovs 1  and A. Bulanovs 1
  • 1 Daugavpils University, Daugavpils, Latvia

Abstract

Mass-produced printed circuit board (PCB) electrodes were used as electrochemical cells to detect the widely-used herbicide glyphosate. Square wave voltammetry (SWV) was used to determine the presence of glyphosate in aqueous Cu(NO3)2 solution. Optimal measurement conditions for the detection of glyphosate with PCB electrodes were found. It was determined that glyphosate was able to soak into the growing plants from the substrate. Glyphosate-contaminated plant juice was distinguished from control samples using the PCB electrode. Glyphosate-contaminated plants were found to have DNA mutations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Stephen, D. O., & Stephen, P. B. (2008). Glyphosate: A Once-in-a-Century herbicide. Society of Chemical Industry. doi:10.1002/ps.1518

  • 2. Linglee, H., Wenchen, K., Hsienchi, C., Jonghuang, J., & Miintsai, L. (2000). Clinical Presentations and Prognostic Factors of a Glyphosate–Surfactant Herbicide Intoxication: A Review of 131 Cases. Academic Emergency Medicine, 7(8), 906–910. doi:10.1111/j.1553-2712.2000.tb02069.x

  • 3. Roberts, D. M., Buckley, N. A., & Mohamed, F. (201). Acute Self-Poisoning with Glyphosate Herbicide: A Prospective Observational Study of the Clinical Toxicology of Glyphosate-Containing Herbicides in Adults with Acute Self-Poisoning. Clinical Toxicology, 48, 129–136. doi:10.3109/15563650903476491

  • 4. Shim, Y. K., Steven, M. P., & Wijngaarden, E. (2009). Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study. Environmental Health Perspectives, 117(6), 1002–1006. doi:10.1289/ehp.0800209

  • 5. Simonetti, E., Cartaud, G., Quinn, R. M., & Dinelli, I. M. (2015). An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour. Journal of AOAC International, 98 (6), 1760–1768. doi:10.5740/jaoacint.15-024

  • 6. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. doi:10.3762/bjnano.9.227

  • 7. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 23. doi:10.1016/j.sbsr.2019.100276

  • 8. Valle, A. L. (2018). Glyphosate Detection: Methods, Needs and Challenges. Environmental Chemistry Letters. doi:10.1007/s10311-018-0789-5

  • 9. Aguirre, M. C., Urreta, S. E., & Gomez, C. G. (2018). A Cu2+-Cu/Glassy Carbon System for Glyphosate Determination. Sensors and Actuators B: Chemical, 284, 675–683. doi:10.1016/j.snb.2018.12.124

  • 10. Moraes, F., Mascaro, L., Machado, S., & Brett, C. (2010). Direct Electrochemical Determination of Glyphosate at Copper Phthalocyanine/Multiwalled Carbon Nanotube Film Electrodes. Electroanalysis, 22 (14), 1586–1591. doi:10.1002/elan.200900614

  • 11. Pintado, S., Amaro, R. R., Mayén, M., & Mellado, J. M. (2012). Electrochemical Determination of the Glyphosate Metabolite Aminomethylphosphonic Acid (AMPA) in Drinking Waters with an Electrodeposited Copper Electrode. International Journal of Eelectrochemical Science, 7, 305–312.

  • 12. Coutinho, C., Silva, M., Machado, S., & Mazo, L. (2007). Influence of Glyphosate on the Copper Dissolution in Phosphate Buffer. Applied Surface Science, 253, 3270–3275. doi:10.1016/j.apsusc.2006.07.020

  • 13. Coutinho, C., Silva, M., Calegaro, M., Machado, S., & Mazo, L. (2007). Investigation of Copper Dissolution in the Presence of Glyphosate Using Hydrodynamic Voltammetry and Chronoamperometry. Solid State Ionics, 178, 161–164. doi:10.1016/j.ssi.2006.10.027

  • 14. Kokina, I., Jahundoviča, I., Mickeviča, I., Sledevskis, E., Ogurcovs, A., & Polyakov, B. (2015). The Impact of CdS Nanoparticles on Ploidy and DNA Damage of Rucola (Eruca sativa Mill.) Plants. Journal of Nanomaterials. Article ID 470250. doi:10.1155/2015/470250

  • 15. Moreno-Olivas, F., Jr., V. U. Gant Jr., Johnson, K. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Random Amplified Polymorphic DNA Reveals that TiO2 Nanoparticles are Genotoxic to Cucurbita Pepo. Journal of Zhejiang University: Science A, 15, 618–623. doi:10.1631/jzus.A1400159

  • 16. Bhaduri, A. M., & Fulekar, M. H. (2015). Biochemical and RAPD Analysis of Hibiscus rosa sinensis Induced by Heavy Metals. Soil and Sediment Contamination: An International Journal, 411–422. doi:10.1080/15320383.2015.970683

  • 17. Sorrentino, M. C., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Genotoxic Effect of Pb and Cd on in Vitro Cultures of Sphagnum Palustre: An Evaluation by ISSR Markers. Chemosphere, 208–215. doi:10.1016/j.chemosphere.2017.04.065

  • 18. Pandey, C., & Gupta, M. (2015). Selenium and Auxin Mitigates Arsenic Stress in Rice (Oryza sativa L.) by Combining the Role of Stress Indicators, Modulators and Genotoxicity Assay. Journal of Hazardous Materials, 384–391. doi:10.1016/j.jhazmat.2015.01.044

  • 19. Nardemir, G., Agar, G., Arslan, E., & Erturk, F. A. (2015). Determination of Genetic and Epigenetic Effects of Glyphosate on Triticum Aestivum with RAPD and CRED-RA Techniques. Theoretical and Experimental Plant Physiology, 131–139. doi:10.1007/s40626-015-0039-1

  • 20. Silprasit, K., Ngamniyom, A., Kerksakul, P., & Thumajitsakul, S. (2016). Using Morphology and Genomic Template Stability (GTS) to Track Herbicide Effect on Some Submersed Aquatic Plants. Applied Environmental Research, 75–85. doi:10.35762/AER.2016.38.1.7

  • 21. Ackova, D. G., Kadifkova-Panovska, T., Andonovska, K. B., & Stafilov, T. (2016). Evaluation of GENOTOXIC VARIATIONS in PLANT MODEL SYSTEMS in a CASE of METAL STRESSORS. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 340–349. doi:10.1080/03601234.2015.1128747

  • 22. Venkatachalam, P., Jayalakshmi, N., & Geetha, N. (2017). Accumulation Efficiency, Genotoxicity and Antioxidant Defense Mechanisms in Medicinal Plant Acalypha Indica L. under Lead Stress. Chemosphere, 544–553. doi:10.1016/j.chemosphere.2016.12.092

OPEN ACCESS

Journal + Issues

Search