Pumped-Storage Hydropower Plants as Enablers for Transition to Circular Economy in Energy Sector: A Case of Latvia

J. Zvirgzdins 1  and O. Linkevics 2
  • 1 Institute of Civil Engineering and Real Estate Economics, 1048, Riga, Latvia
  • 2 Institute of Power Engineering, Department of Power System Control and Automation, 1048, Riga, Latvia

Abstract

Nowadays the planet is facing emerging global issues related to climate change, pollution, deforestation, desertification and the number of challenges is expected to grow as the global population is forecasted to reach 10 billion margin by 2050. A concept of circular economy can have a positive contribution to the current development trajectories. In order to implement it, preferably all the energy should be produced by using renewable energy sources, but there has always been a challenge for storage of renewable energy. Therefore, considering technical and economical parameters, construction options for a pumped storage hydropower plant in Latvia have been evaluated using the desk research methodology. Results have shown that Daugavpils PSHP is the most attractive project from the technological point of view, but it requires the greatest amount of investment and construction of Daugavpils HPP. At present all the construction options for PSHP in Latvia are economically disadvantageous and would not be viable without co-financing from European or national funds. Considering both technical and economical parameters, the authors emphasise Plavinas PSHP construction option.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Geipele, I., Plotka, K., Wirzhbitskis, Y., & Zvirgzdiņš, J. (2018). The synergy in circular economy. Advances in Economics, Business and Management Research, China, Hohhot, 20–22 October 2018. (pp. 65–68). Atlantis Press. DOI: 10.2991/febm-18.2018.15

  • 2. Boulding, K.E. (1966). The economics of the coming spaceship earth. In H. Jarrett (Ed.), Environmental Quality Issues in a Growing Economy, pp. 3–14.

  • 3. Geipele, S., Pudzis, E., Uzulens, J., Geipele, I., & Zeltins, N. (2018). The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Legal Indicators. A Case Study of Latvia (Part Four). Latvian Journal of Physics and Technical Sciences, 55 (4), 44–56. DOI: 10.2478/lpts-2018-0028

  • 4. Geipele, S., Geipele, I., Kauskale, L., Zeltins, N., Staube, T., & Pudzis, E. (2017). The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Scientific Indicators. A Case Study of Latvia (Part Three). Latvian Journal of Physics and Technical Sciences, 54 (5), 3–13. DOI: 10.1515/lpts-2017-0029

  • 5. Pudzis, E., Ādlers, Ā., Puķīte, I., Geipele, S., & Zeltinš, N. (2018). Identification of Maritime Technology Development Mechanisms in the Context of Latvian Smart Specialisation and Blue Growth. Latvian Journal of Physics and Technical Sciences, 55 (4), 57–69. ISSN 0868-8257. DOI: 10.2478/lpts-2018-0029

  • 6. Actina, G., Geipele, I., & Zeltins, N. (2015). Planning and managing problems of energy and energy efficiency at regional and district level in Latvia: case study. In Industrial Engineering and Operations Management: Proceedings of the 5th International Conference on Industrial Engineering and Operations Management (IEOM). Dubai United Arab Emirates, 3–5 March 2015 (pp. 1482–1488). DOI: 10.1109/IEOM.2015.7093843

  • 7. Carnegie, R., Gotham, D., Nderitu, D., & Preckel, P.V. (2013). Utility Scale Energy Storage Systems: Benefits, Applications and Technologies. State Utility Forecasting Group. Available at: https://www.purdue.edu/discoverypark/energy/assets/pdfs/SUFG/publications/SUFG%20Energy%20Storage%20Report.pdf

  • 8. Appun, K. (2018). Sector Coupling – Shaping an Integrated Renewable Energy System. Journalism for the Energy Transition. Available at: https://www.cleanenergywire.org/factsheets/sector-coupling-shaping-integrated-renewable-power-system

  • 9. Cord, D.J. (2018). Power-to-X: A potential Sparker in the Energy Transition. Wärtsilä. Available at: https://www.wartsila.com/twentyfour7/innovation/power-to-x-a-potential-sparker-in-the-energy-transition

  • 10. Nord Pool Spot. (2019). Wind Power. Available at: https://www.nordpoolgroup.com/Market-data1/Power-system-data/Production1/Wind-Power/

  • 11. Nord Pool Spot. (2019). Wind Power Prognosis. Available at: https://www.nordpoolgroup.com/Market-data1/Power-system-data/Production1/Wind-Power-Prognosis/ALL/Hourly/?view=table

  • 12. Nord Pool Spot. (2019). Historical Market Data. Available at: http://nordpoolspot.com/historical-market-data/

  • 13. Даугавпилсская ГАЭС Предложение, Проектно-изыскательский и научно-исследовательский институт “Гидропроект” имени С. Я. Жука. (1986). [Daugavpilsskaya GAES Predlozhenie, Projektno-vziskateljnij i nauchno-issledovateljskij institute “Gidroproekt” imeni S.J. Zhuka], Москва.

  • 14. Pļaviņu HAES izvērtējums: Pļaviņu HES rezerves pārgāznē iebūvēta sūkņu stacija (2015). Rīga: Latvenergo, 34 lpp.

  • 15. Rīgas HAES novērtējums (2012). Rīga: Latvenergo, 46 lpp.

  • 16. Petrichenko, L., Broka, Z., Sauhats, A., & Bezrukovs, D. (2018). Cost-Benefit Analysis of Li-Ion Batteries in a Distribution Network. 15th International Conference on the European Energy Market (EEM) (pp. 1-5). IEEE. DOI: 10.1109/EEM.2018.8469782

  • 17. Zima-Bockarjova, M., Sauhats, A., Petrichenko, L., & Petrichenko, R. (2020). Charging and Discharging Scheduling for Electrical Vehicles Using a Shapley-Value Approach. Energies, 13 (5), 1160. DOI: 10.3390/en13051160

  • 18. Sauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41 (29), 12443-12453. DOI: 10.1016/j.ijhydene.2016.03.078

OPEN ACCESS

Journal + Issues

Search