Open Access

Gas Combustion Efficiency Enhancement: Application Study of Intense Elestrostatic Field


Cite

A number of international, European Union and Latvian legislative acts have been developed, which regulate the efficiency of gas combustion plants and greenhouse gas emissions in the atmosphere. These legislative acts require the development of new scientifically efficient methods for gas optimal combustion with a minor impact on the environment. In order to achieve such a goal, different methods can be used, but the most efficient is an intensive electrostatic field application to control combustion and harmful emission formation in premixed flames. In the framework of the current study, the authors developed a hybrid burner, which allowed generating an intensive electrostatic field with intensity of more than 1000 kV/m. The study also investigated the impact of such a field on the formation of harmful emissions, including CO2 and flue gas temperature. The empirical results showed that an intensive DC electrostatic field generated inside of the burner had an impact on the flame shape, CO2, NOx emissions and flue gas temperature. In its turn, by applying an intensive pulsating electrostatic field (multivariable experiment) it was possible to achieve the reduction in NOx, CO emissions with a simultaneous increase in flue gas temperature, which was related to combustion process efficiency enhancement.

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics