Challenges and Barriers by Transition Towards 4th Generation District Heating System: A Strategy to Establish a Pricing Mechanism

Open access


Transition of the district heating (DH) system to the 4th generation system involves several challenges, which refer not only to the introduction of state-of-art technologies, but also to the development of a sustainable pricing methodology. Introduction of the 4th generation systems will soon force the DH industry to solve issues regarding the possibility of organisation of the market in the same way as it happened in the power industry (Directive 2009/72/EC) by complete separation of producers from the transmission system service providers. The present article discusses various development scenarios of a DH utility within the framework of an organised market and their pricing methodologies, as well as evaluates their sustainability considering the transition to the 4th generation system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Lund H. Werner S. Wiltshire R. Svendsen S. Thorsen J. Hvelplund F. & Mathiesen B.V. (2014). 4th generation district heating (4GDH) integrating smart thermal grids into future sustainable energy systems. Energy 68 1–11 DOI: 10.1016/

  • 2. Pieper H. Ommen T. Elmegaard B. & Markussen W.B. (2019). Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy 176 156–170 DOI: 10.1016/

  • 3. Hammer A. Sejkora C. & Kienberger T. (2018). Increasing district heating networks efficiency by means of temperature-flexible operation. Sustainable Energy Grids and Networks 16 393–404 DOI: 10.1016/j.segan.2018.11.001.

  • 4. Werner S. (2017). International review of district heating and cooling. Energy137 617–631 DOI: 10.1016/

  • 5. European Commission (2008). 3 Communication from the Commission to European Parliament the Council the European Economic and Social Committee and the Committee of the Regions – 20 20 by 2020: Europe’s climate change opportunity. European CommissionCOM(2008)30 Final 1–12.

  • 6. Eurostat (n.d.). Available at:

  • 7. Lund H. Østergaard P. Connolly D. & Mathiesen B.V. (2017). Smart energy and smart energy systems. Energy 1–10 DOI: 10.1016/

  • 8. European Parlament (2009). Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC. Official Journal of the European Union L 211/55 55–93.

  • 9. European Comission (2016). An EU Strategy on Heating and Cooling. Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions COM(2016) 51 Final 1–13.

  • 10. Eurostat (2018). Energy balance sheets. 2016 data. Eurostat 1–116.

  • 11. Rehman H. Hirvonen J. & Sirén K. (2018). Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system. Applied Energy 229 1072–1094 DOI: 10.1016/j.apenergy.2018.08.064.

  • 12. Renaldi R. & Friedrich D. (2019). Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Energy Policy 236 388–400 DOI: 10.1016/j.apenergy.2018.11.030.

  • 13. Pacot P. & Reuter S. (2011). Quality indicators for district heating networks. Available at:

  • 14. Iddrisu I. & Bhattacharyya S. (2015). Sustainable energy development index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews 50 513–530 DOI: 10.1016/j.rser.2015.05.032.

  • 15. Romanchenko D. Odenberger M. Göransson L. & Johnsson F. (2017). Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg Sweden. Applied Energy 204 16–30 DOI: 10.1016/j.apenergy.2017.06.092.

  • 16. Ziemele J. Vigants G. Vitolins V. Blumberga D. & Veidenbergs I. (2014A). District heating systems performance analyses. heat energy tariff. Environmental and Climate Technologies 13 32–43 DOI: 10.2478/rtuect-2014-0005.

  • 17. Büchele R. Kranzl L. & Hummel M. (2018). What is the impact of the policy framework on the future of district heating in Eastern European countries? The case of Brasov. Energy Strategy Reviews 19 72–75 DOI: 10.1016/j.esr.2017.12.003.

  • 18. Koirala B. Koliou E. Friege J. Hakvoort R. & Herder P. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews 56 722–744 DOI: 10.1016/j.rser.2015.11.080.

  • 19. Hansen C. Gudmundsson O. & Detlefsen N. (2019). Cost efficiency of district heating for low energy buildings of the future. Energy 177 77–86 DOI: 10.1016/

  • 20. Turski M. & Sekret R. (2018). Buildings and a district heating network as thermal energy storages in the district heating system. Energy & Buildings 179 49–56

  • 21. Zhang J. Ge B. & Xu H. (2013). An equivalent marginal cost-pricing model for the district heating market. Energy Policy 63 1224–1232 DOI: 10.1016/j.enpol.2013.09.017.

  • 22. Public Utilities Commission of Latvia (2010). Methodology for the Calculation of Thermal Energy Supply Service Tariffs. Decision No. 1/7 of the Board of the Public Utilities Commission.

  • 23. Central Statistical Bureau (2019). Available at:

  • 24. Tol H.I. & Svendsen S. (2015). Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe Danmark. Energy and Buildings 88 324–334 DOI: 10.1016/j.enbuild.2014.10.067.

  • 25. Dalla Rosa A. & Christensen J. (2011). Low-energy district heating in energy-efficient building areas. Energy 36 6890–6899 DOI: 10.1016/

  • 26. Cai H. You S. Wang J. Bindner H.W. & Klyapovskiy S. (2018). Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy150 938–949 DOI: 10.1016/

  • 27. Dalla Rosa A. Li H. Svendsen S. Werner S. Persson U. Ruehling K. & Felsman C. (2014). Toward 4th generation district heating: Experince and potential of low-temperature district heating. Germany: International Energy Agency.

  • 28. Averfalk H. Werner S. Felsmann C. Rühling K. Wiltshire R. & Svendsen S. (2017). Transformation roadmap from high to low temperature district heating systems. Annex XI final report. International Energy Agency.

  • 29. Li H. & Wang S.J. (2014). Challenges in smart low-temperature district heating development. Energy Procedia 61 1472–1475 DOI: 10.1016/j.egypro.2014.12.150.

  • 30. Okkonen L. & Suhonen N. (2010). Business models of heat entrepreneurship in Finland. Energy Policy 38 3443–3452 DOI: 10.1016/j.enpol.2010.02.018.

  • 31. Prando D. Renzi M. Gasparella M. Gasparella A. & Baratieri M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering 79 98–107 DOI: 10.1016/j.applthermaleng.2014.12.063.

  • 32. Madlener R. (2007). Innovation diffusion public policy and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy 35 1992–2008. DOI: 10.1016/j.enpol.2006.06.010.

  • 33. Ilic D. & Trygg L. (2014). Economic and environmental benefits of converting industrial processes to district heating. Energy Conversion and Management 87 305–317 DOI: 10.1016/j.enconman.2014.07.025.

  • 34. Paiho S. & Saastamoinen H. (2018). How to develop district heating in Finland? Energy Policy 122 668–676 DOI: 10.1016/j.enpol.2018.08.025.

  • 35. Sarma U. & Bazbauers G. (2016). District heating regulation: parameters for the benchmarking model. Energy Procedia 95 401–407 DOI: 10.1016/j.egypro.2016.09.046.

  • 36. Li H. Sun Q. Zhang Q. & Wallin F. (2015). A review of the pricing mechanisms for district heating systems. Renewable and Sustainable Energy Reviews 42 56–65 DOI: 10.1016/j.rser.2014.10.003.

  • 37. Köfinger M. Basciotti D. Schmidt R. Meissner E. Doczekal C. & Giovannini A. (2016). Low temperature district heating in Austria: Energetic ecologic and economic comparison of four case studies. Energy 110 95–104 DOI: 10.1016/

  • 38. Zvingilaite E. & Klinge Jacobsen H. (2015). Heat savings and generation technologies:Modelling of residential investment behaviou with local health costs. Energy Policy 77 31–45 DOI: 10.1016/j.enpol.2014.11.032.

  • 39. Dalla Rosa A. Boulter R. Church K. & Svendsen S. (2012). District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solution (SMORES) in Canada: A case study. Energy 45 960–974 DOI: 10.1016/

Journal information
Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 5
PDF Downloads 32 32 3