Magnon and Phonon Excitations in Nanosized NiO

Open access

Abstract

Single-crystal, microcrystalline and nanocrystalline nickel oxides (NiO) have been studied by Raman spectroscopy. A new band at ~200 cm−1 and TO-LO splitting of the band at 350–650 cm−1 have been found in the spectra of single-crystals NiO(100), NiO(110) and NiO(111). The Raman spectra of microcrystalline (1500 nm) and nanocrystalline (13–100 nm) NiO resemble those of the single crystals. They all contain the two-magnon band at 1500 cm−1, indicating that the oxides remain at room temperature in the antiferromagnetic phase. Besides, a new sharp Raman band has been observed at 500 cm−1 in nanocrystalline NiO. Its temperature dependence suggests the magnetic origin of the band, possibly associated with the one-phonon–one-magnon excitation at the Brillouin zone centre.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Lee D. U. Fu J. Park M. G. Liu H. Ghorbani Kashkooli A. & Chen Z. (2016). Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett.16 1794–1802. DOI: 10.1021/acs.nanolett.5b04788

  • 2. Browne M. Nolan H. Berner N. Duesberg G. Colavita P. & Lyons M. (2016). Electrochromic nickel oxide films for smart window applications. Int. J. Electrochem. Sci.11 6636–6647. DOI: 10.20964/2016.08.38

  • 3. Lee S. G. Lee S. & Lee H. I. (2001). Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Appl. Catal. A 207 173–181. DOI: 10.1016/S0926-860X(00)00671-2

  • 4. Ando M. Zehetner J. Kobayashi T. & Haruta M. (1996). Large optical CO sensitivity of NO2-pretreated Au-NiO composite films. Sens. Actuators B36 513–516. DOI: 10.1016/S0925-4005(97)80121-9

  • 5. Múčka V. & Baburek E. (1998). Catalytic properties of nickel-yttrium mixed oxides and the influence of ionizing radiation. Rad. Phys. Chem.53 483–489. DOI: 10.1016/S0969-806X(98)00216-3

  • 6. Lee C. B. B. S. Kang B. S. Benayad A. Lee M. J. Ahn S.-E. Kim K. H. … & Yoo I. K. (2008). Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl. Phys. Lett.93 042115. DOI: 10.1063/1.2967194

  • 7. Tsymbal E. Y. & Pettifor D. G. (2001). Perspectives of giant magnetoresistance. Solid State Phys.56 113–237. DOI: 10.1016/S0081-1947(01)80019-9

  • 8. Roth W. L. (1958). Magnetic structures of MnO FeO CoO and NiO. Phys. Rev. 110 1333–1341. DOI: 10.1103/PhysRev.110.1333

  • 9. Hutchings M. T. & Samuelsen E. J. (1972). Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B6 3447–3461. DOI: 10.1103/PhysRevB.6.3447

  • 10. Hillebrecht F. U. Ohldag H. Weber N. B. Bethke C. Mick U. Weiss M. & Bahrdt J. (2001). Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86 3419–3422. DOI: 10.1103/PhysRevLett.86.3419

  • 11. Rooksby H. P. (1948). A note on the structure of nickel oxide at subnormal and elevated temperatures. Acta Crystallogr. 1 226. DOI: 10.1107/S0365110X48000612

  • 12. Slack G. A. (1960). Crystallography and domain walls in antiferromagnetic NiO crystals J. Appl. Phys.31 1571–1582. DOI: 10.1063/1.1735895

  • 13. Massarotti V. Capsoni D. Berbenni V. Riccardi R. Marini A. & Antolini E. (1991). Structural characterization of nickel oxide. Z. Naturforsch. A46 503–512. DOI: 10.1515/zna-1991-0606

  • 14. Rodic D. Spasojevic V. Kusigerski V. Tellgren R. & Rundlof H. (2000). Magnetic ordering in polycrystalline NixZn1-xO solid solutions. Phys. Status Solidi B218 527–536. DOI: 10.1002/1521-3951(200004)218:2<527::AID-PSSB527>3.0.CO;2-I

  • 15. Balagurov A. M. Bobrikov I. A. Sumnikov S. V. Yushankhai V. Y. & Mironova-Ulmane N. (2016). Magnetostructural phase transitions in NiO and MnO: neutron diffraction data. JETP Lett.104 88–93. DOI: 10.1134/S0021364016140071

  • 16. Chung E. M. L. Paul D. M. Balakrishnan G. Lees M. R. Ivanov A. & Yethiraj M. (2003). Role of electronic correlations on the phonon modes of MnO and NiO. Phys. Rev. B68 140406. DOI: 10.1103/PhysRevB.68.140406

  • 17. Luo W. Zhang P. & Cohen M. L. (2007). Splitting of the zone-center phonon in MnO and NiO. Solid State Commun. 142 504–508. DOI: 10.1016/j.ssc.2007.03.047

  • 18. Kant C. Mayr F. Rudolf T. Schmidt M. Schrettle F. Deisenhofer J. & Loidl A. (2009). Spin-phonon coupling in highly correlated transition-metal monoxides. Eur. Phys. J. Special Topics180 43–59. DOI: 10.1140/epjst/e2010-01211-6

  • 19. Mørup S. Madsen D. E. Frandsen C. Bahl C. R. H. & Hansen M. F. (2007). Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys.: Condens. Matter19 213202. DOI: 10.1088/0953-8984/19/21/213202

  • 20. Nakahigashi K. Fukuoka N. & Shimomura Y. (1975). Crystal structure of antiferromagnetic NiO determined by X-ray topography. J. Phys. Soc. Jpn. 38 1634–1640. DOI: 10.1143/JPSJ.38.1634

  • 21. Kodama R. H. Makhlouf S. A. & Berkowitz A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79 1393–1396. DOI: 10.1103/PhysRevLett.79.139

  • 22. Kodama R. H. & Berkowitz A. E. (1999). Atomic-scale magnetic modelling of oxide nanoparticles. Phys. Rev. B59 6321–6336. DOI: 10.1103/PhysRevB.59.6321.

  • 23. Tiwari S. D. & Rajeev K. P. (2006). Magnetic properties of NiO nanoparticles Thin Solid Films505 113–117. DOI: 10.1016/j.tsf.2005.10.019

  • 24. Mandal S. Banerjee S. & Menon K. S. R. (2009). Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle. Phys. Rev. B80 214420. DOI: 10.1103/PhysRevB.80.214420

  • 25. Mandal S. Menon K. S. R. Mahatha S. K. & Banerjee S. (2011). Finite size versus surface effects on magnetic properties of antiferromagnetic particles. Appl. Phys. Lett.99 232507. DOI: 10.1063/1.3668091

  • 26. Cooper J. F. K. Ionescu A. Langford R. M. Ziebeck K. R. A. Barnes C. H. W. Gruar R. … & Ouladdiaf B. (2013). Core/shell magnetism in NiO nanoparticles. J. Appl. Phys. 114 083906. DOI: 10.1063/1.4819807

  • 27. Balagurov A. M. Bobrikov I. A. Grabis J. Jakovlevs D. Kuzmin A. Maiorov M. & Mironova-Ulmane N. (2013). Neutron scattering study of structural and magnetic size effects in NiO. IOP Conf. Ser.: Mater. Sci. Eng.49 012021. DOI: 10.1088/1757-899X/49/1/012021

  • 28. Yang Z. Gao D. Tao K. Zhang J. Shi Z. Xu Q. Shi S. & Xue D. (2014). A series of unexpected ferromagnetic behaviors based on the surface-vacancy state: an insight into NiO nanoparticles with a core-shell structure. RSC Adv. 4 46133–46140. DOI: 10.1039/C4RA06472K

  • 29. Balagurov A. M. Bobrikov I. A. Sumnikov S. V. Yushankhai V. Y. Grabis J. Kuzmin A. … & Sildos I. (2016). Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders. Phys. Status Solidi B253 1529–1536. DOI: 10.1002/pssb.201552680

  • 30. Richardson J. T. Yiagas D. I. Turk B. Forster K. & Twigg M. V. (1991). Origin of superparamagnetism in nickel oxide. J. Appl. Phys. 70 6977–6982. DOI: 10.1063/1.349826

  • 31. Klausen S. N. Lindgärd P. A. Lefmann K. Bødker F. & Mørup S. (2002). Temperature dependence of the magnetization of disc shaped NiO nanoparticles. Phys. Status Solidi A189 1039–1042. DOI: 10.1002/1521-396X(200202)189:3<1039::AID-PSSA1039>3.0.CO;2-A

  • 32. Li L. Chen L. Qihe R. & Li G. (2006). Magnetic crossover of NiO nanocrystals at room temperature. Appl. Phys. Lett. 89 134102. DOI: 10.1063/1.2357562

  • 33. Makhlouf S. A. Kassem M. A. & Abdel-Rahim M. A. (2009). Particle size-dependent electrical properties of nanocrystalline NiO. J. Mater. Sci.44 3438–3444. DOI: 10.1007/s10853-009-3457-0

  • 34. Duan W. J. Lu S. H. Wu Z. L. & Wang Y. S. (2012). Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C116 26043–26051. DOI: 10.1021/jp308073c

  • 35. Dietz R. E. Parisot G. I. & Meixner A. E. (1971). Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys. Rev. B4 2302–2310. DOI: 10.1103/PhysRevB.4.2302

  • 36. Dietz R. E. Brinkman W. F. Meixner A. E. & Guggenheim H. J. (1971). Raman scattering by four magnons in NiO and KNiF3. Phys. Rev. Lett. 27 814–817. DOI: 10.1103/PhysRevLett.27.814

  • 37. Lockwood D. J. Cottam M. G. & Baskey J. H. (1992). One- and two-magnon excitations in NiO. J. Magn. Magn. Mater. 104 1053–1054. DOI: 10.1016/0304-8853(92)90486-8

  • 38. Pressl M. Mayer M. Knoll P. Lo S. Hohenester U. & Holzinger-Schweiger E. (1996). Magnetic Raman scattering in undoped and doped antiferromagnets. J. Raman Spectroscopy27 343–349. DOI: 10.1002/(SICI)1097-4555(199603)27:3/4<343::AID-JRS956>3.0.CO;2-S

  • 39. Grimsditch M. McNeil L. E. & Lockwood D. J. (1998). Unexpected behavior of the antiferromagnetic mode of NiO. Phys. Rev. B58 14462–14466. DOI: 10.1103/PhysRevB.58.14462

  • 40. Cazzanelli E. Kuzmin A. Mariotto G. & Mironova-Ulmane N. (2003). Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy. J. Phys.: Condensed Matter15 2045. DOI: 10.1088/0953-8984/15/12/321

  • 41. Cazzanelli E. Kuzmin A. Mironova-Ulmane N. & Mariotto G. (2005). Behavior of one-magnon frequency in antiferromagnetic NicMg1-cO solid solutions. Phys. Rev. B71 134415. DOI: 10.1103/PhysRevB.71.134415

  • 42. Aytan E. Debnath B. Kargar F. Barlas Y. Lacerda M. M. Li J. X. … & Balandin A. A. (2017). Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 111 252402. DOI: 10.1063/1.5009598

  • 43. Haywood B. C. G. & Collins M. F. (1969). Lattice dynamics of MnO. J. Phys. C: Solid State Phys. 2 46. DOI: 10.1088/0022-3719/2/1/306

  • 44. Haywood B. C. G. & Collins M. F. (1971). Optical phonons in MnO. J. Phys. C: Solid State Phys. 4 1299. DOI: 10.1088/0022-3719/4/11/005

  • 45. Upadhyaya K. S. & Singh R. K. (1974). Shell model lattice dynamics of transition metal oxides. J. Phys. Chem. Solids35 1175–1179. DOI: 10.1016/S0022-3697(74)80137-X

  • 46. Reichardt W. Wagner V. & Kress W. (1975). Lattice dynamics of NiO. J. Phys. C: Solid State Phys.8 3955. DOI: 10.1088/0022-3719/8/23/009

  • 47. Coy R. A. Tompson C. W. & Gürmen E. (1976). Phonon dispersion in NiO. Solid State Commun.18 845–847. DOI: 10.1016/0038-1098(76)90220-9

  • 48. Savrasov S. Y. & Kotliar G. (2003). Linear response calculations of lattice dynamics in strongly correlated systems. Phys. Rev. Lett. 90 056401. DOI: 10.1103/PhysRevLett.90.056401

  • 49. Massidda S. Posternak M. Baldereschi A. & Resta R. (1999). Noncubic behavior of antiferromagnetic transition-metal monoxides with the rocksalt structure. Phys. Rev. Lett.82 430–433. DOI: 10.1103/PhysRevLett.82.430

  • 50. Mironova-Ulmane N. Kuzmin A. Steins I. Grabis J. Sildos I. & Pärs M. (2007). Raman scattering in nanosized nickel oxide NiO. J. Phys.: Conf. Ser.93 012039. DOI: 10.1088/1742-6596/93/1/012039

  • 51. Mironova-Ulmane N. Kuzmin A. Grabis J. Sildos I. Voronin V. Berger I. & Kazantsev V. (2011). Structural and magnetic properties of nickel oxide nanopowders. Solid State Phenomena168–169 341–344. DOI: 10.4028/www.scientific.net/SSP.168-169.341

  • 52. Gandhi A. C. Pant J. Pandit S. D. Dalimbkar S. K. Chan T.-S. Cheng C.-L. … & Wu S. Y. (2013). Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C117 18666–18674. DOI: 10.1021/jp4029479

  • 53. Ravikumar P. Kisan B. & Perumal A. (2015). Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv. 5 087116. DOI: 10.1063/1.4928426

  • 54. Mironova-Ulmane N. Kuzmin A. & Sildos I. (2015). Template-based synthesis of nickel oxide. IOP Conf. Ser.: Mater. Sci. Eng.77 012025. DOI: 10.1088/1757-899X/77/1/012025

  • 55. Mironova-Ulmane N. Kuzmin A. Sildos I. & Pärs M. (2011). Polarisation dependent Raman study of single-crystal nickel oxide. Centr. Eur. J. Phys. 9 1096–1099. DOI: 10.2478/s11534-010-0130-9

  • 56. Mironova-Ulmane N. Kuzmin A. Skvortsova V. & Sildos I. (2002). Exciton-magnon interactions in NicMg1-cO single-crystals. Phys. Solid State44 1463–1467. DOI: 10.1134/1.1501338

  • 57. Ishikawa K. Fujima N. & Komura H. (1985). First-order Raman scattering in MgO micro-crystals. J. Appl. Phys. 57 973–975. DOI: 10.1063/1.334701

  • 58. Gouadec G. & Colomban P. (2007). Raman Spectroscopy of nanomaterials: How spectra relate to disorder particle size and mechanical properties. Progr. Crystal Growth Charact. Mater. 53 1–56. DOI: 10.1016/j.pcrysgrow.2007.01.001

  • 59. Alders D. Tjeng L. H. Voogt F. C. Hibma T. Sawatzky G. A. Chen C. T. & Iacobucci S. (1998). Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B57 11623–11631. DOI: 10.1103/PhysRevB.57.11623

Search
Journal information
Impact Factor


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 231 35
PDF Downloads 153 153 19