Luminescence Properties and Decay Kinetics of Mn2+ and Eu3+ Co-Dopant Ions In MgGa2O4 Ceramics

A. Luchechko 1 , Ya. Zhydachevskyy 2 , 3 , D. Sugak 2 , O. Kravets 1 , N. Martynyuk 2 , A.I. Popov 4 , S. Ubizskii 2 , and A. Suchocki 3 , 5
  • 1 Ivan Franko National University of Lviv, , 79017, Lviv, Ukraine
  • 2 Lviv Polytechnic National University, , 79646, Lviv, Ukraine
  • 3 Institute of Physics, Polish Academy of Sciences, , 02-668, Warsaw, Poland
  • 4 Institute of Solid State Physics, University of Latvia, Latvia
  • 5 Institute of Physics, University of Bydgoszcz, 85-072, Bydgoszcz, Poland


The MgGa2O4 ceramics co-doped with Mn2+ and Eu3+ ions were synthesized via a high-temperature solid-state reaction technique. The samples with various Eu3+ concentrations were characterised using high-resolution photoluminescence (PL) spectroscopy. The PL spectra show weak matrix emission in a blue spectral region with dominant excitation band around 380 nm. Manganese ions are highly excited deeply in UV region and exhibit emission band peaked at 502 nm. The Eu3+ ions show characteristic f-f excitation and emission lines. The energy transfer between host defects and activator ions was observed. Luminescence decay curves of Mn2+ and Eu3+ emission showed complex kinetics with both Eu3+-ion concentration and excitation wavelength changes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Brik, M. G., Suchocki, A., & Kaminska, A. (2014). Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorganic chemistry, 53(10), 5088–5099.

  • 2. Suchocki, A., & Powell, R.C. (1988). Laser-induced grating spectroscopy of Cr3+-doped Gd3Ga5O12 and Gd3Sc2Ga3O12 crystals. Chemical Physics, 128(1), 59–71.

  • 3. Matkovski, A., Durygin, A., Suchocki, A., Sugak, D., Neuroth, G., Walrafend, F., ... Solski, I. (1999). Photo and gamma induced color centers in the YAlO3 and YAlO3:Nd single crystals. Optical Materials, 12(1), 75–81.

  • 4. Dimza, V., Popov, A. I., Lāce, L., Kundzins, M., Kundzins, K., Antonova, M., & Livins, M. (2017). Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Applied Physics, 17(2), 169–173.

  • 5. Porotnikova, N. M., Anan’ev, M. V., & Kurumchin, E. K. (2011). Effect of defect structure of lanthanum manganite on oxygen exchange kinetics and diffusion. Russian Journal of Electrochemistry, 47(11), 1250–1256.

  • 6. Porotnikova, N. M., Eremin, V. A., Farlenkov, A. S., Kurumchin, E. K., Sherstobitova, E. A., Kochubey, D. I., & Ananyev, M. V. (2018). Effect of AO segregation on catalytical activity of La0.7A0.3MnO3±δ (A= Ca, Sr, Ba) regarding oxygen reduction reaction. Catalysis Letters, 148(9), 2839–2847.

  • 7. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Electronic structure of Mn3+ Al and Mn2+ Al-doped YAlO3: Prediction from the first principles. Optical Materials, 85, 162–166.

  • 8. Klym, H., Ingram, A., Shpotyuk, O., Hadzaman, I., Solntsev, V., Hotra, O., & Popov, A. I. (2016). Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 42(7), 601–605.

  • 9. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Atomic structure of manganese-doped yttrium orthoaluminate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 434, 6–8.

  • 10. Porotnikova, N.M., Ananyev, M.V., Eremin, V.A., Molchanova, N.G., & Kurumchin, E.K. (2016). Effect of acceptor substitution in perovskites La1-xAxMnO3±δ (A = Ca, Sr, Ba) on the kinetics of interaction of gas-phase oxygen. Russian Journal of Electrochemistry, 52(8), 717–722.

  • 11. Zhydachevskyy, Ya., Martynyuk, N., Popov, A.I., Sugak, D., Bilski, P., Ubizskii, S., … Suchocki, A. (2018). Thermally induced fading of Mn-doped YAP nanoceramics. Journal of Physics: Conference Series, 987(1), 012009.

  • 12. Zhang, Y., Wu, Z., Geng, D., Kang, X., Shang, M., Li, X., … Lin, J. (2014). Full color emission in ZnGa2O4: Simultaneous control of the spherical morphology, luminescent, and electric properties via hydrothermal approach. Advanced Functional Materials, 24(42), 6581–6593.

  • 13. Luchechko, A., & Kravets, O. (2017). Novel visible phosphors based on MgGa2O4-ZnGa2O4 solid solutions with spinel structure co-doped with Mn2+ and Eu3+ ions. Journal of Luminescence, 192, 11–16

  • 14. Duan, X., Yu, F., & Wu, Y. (2012). Synthesis and luminescence properties of ZnGa2O4 spinel doped with Co2+ and Eu3+ ions. Applied Surface Science, 261, 830–834.

  • 15. Huo, Q., Tu, W., & Guo, L. (2017). Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots. Optical Materials, 72, 305–312.

  • 16. Polisadova, Е. F., Vaganov, V. А., Stepanov, S. A., Paygin, V. D., Khasanov, О. L., Dvilis, E. S., ... Kalinin, R. G. (2018). Pulse cathodoluminescence of the impurity centers in ceramics based on the MgAl2O4 spinel. Journal of Applied Spectroscopy, 85(3), 416–421.

  • 17. Martynyuk, N.V., Ubizskii, S.B., Buryy, O.A., Becker, K.D., & Kreye, M. (2005). Optical in-situ study of the oxidation and reduction kinetics of Yb-substituted YAG epitaxial films. Physica Status Solidi C: Conferences, 2(1), 330–333.

  • 18. Zhydachevskii, Y., Syvorotka, I.I., Vasylechko, L., Sugak, D., Borshchyshyn, I.D., Luchechko, A.P., … Suchocki, A. (2012). Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol-gel method. Optical Materials, 34(12), 1984–1989.

  • 19. Luchechko, A., Kravets, O., Kostyk, L., & Tsvetkova, O. (2016). Luminescence spectroscopy of Eu3+and Mn2+ ions in MgGa2O4 spinel. Radiation Measurements, 90, 47–50.

  • 20. Kirm, M., Feldbach, E., Lushchik, A., Lushchik, Ch., Maaroos, A., Savikhina, & T. (1997). Luminescent materials with photon multiplication. Optical Inorganic Dielectric Materials and Devices (eds. A. Krumins, D.K. Millers, A. Sternberg, J. Spigulis) Proc. SPIE, 2967, 18–23.

  • 21. Lushchik, A., Lushchik, Ch., Kotlov, A., Kudryavtseva, I., Maaroos, A., Nagirnyi, V., & Vasil’chenko, E. (2004). Spectral transformers of VUV radiation on the basis of wide-gap oxides. Radiation Measurements, 38(4–6), 747–752.

  • 22. Lushchik, A., Lushchik, C., Popov, A.I., Schwartz, K., Shablonin, E., & Vasil’chenko, E. (2016). Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 374, 90–96.

  • 23. Lushchik, A., Dolgov, S., Feldbach, E., Pareja, R., Popov, A. I., Shablonin, E., & Seeman, V. (2018). Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 435, 31–37.

  • 24. Kravets, O.P., Lys, R.M., Tsvetkova, O.V., Luchechko, A.P., & Pavlyk, B.V. (2018). Thermally stimulated luminescence and thermally stimulated depolarization currents in MgGa2O4 spinels. Journal of Physical Studies, 22(1), 1602.

  • 25. Luchechko, A., Kravets, O., & Syvorotka, I.I. (2017). Optical and luminescence spectroscopy of zinc gallate phosphors codoped with manganese and europium ions. Spectroscopy Letters, 50(7), 404–410.

  • 26. Luchechko, A., Kravets, O., Tsvetkova, O. (2017). Structure and optical-lumenescent characteristics of Mg1-xZnxGa2O4: Mn2+ ceramics. Journal of Nano- and Electronic Physics, 9(1), 01003.

  • 27. Valiev, D., Khasanov, O., Dvilis, E., Stepanov, S., Polisadova, E., & Paygin, V. (2018). Luminescent properties of MgAl2O4 ceramics doped with rare earth ions fabricated by spark plasma sintering technique. Ceramics International, 44(17), 20768–20773.

  • 28. Tsai, B. S., Chang, Y. H., & Chen, Y. C. (2006). Preparation and luminescent characteristics of Eu3+-activated MgxZn1−xGa2O4 nanocrystals. Journal of Alloys and Compounds, 407(1–2), 289–293.

  • 29. Luchechko, A., & Kravets, O. (2017). Synthesis and luminescent properties of magnesium gallate spinel doped with Mn2+ and Eu3+ ions. Physica Status Solidi С, 14(1–2), 1600146.

  • 30. Luchechko, A., Zhydachevskyy, Y., Maraba, D., Bulur, E., Ubizskii, S., & Kravets, O. (2018). TL and OSL properties of Mn2+-doped MgGa2O4 phosphor. Optical Materials, 78, 502–507.

  • 31. Takesada, M., Osada, M., & Isobe, T. (2009). Glycothermal synthesis and photoluminescence of MgGa2O4: Mn2+ nanophosphors: Comparison to ZnGa2O4: Mn2+ nanophosphors. Journal of the Electrochemical Society, 156(5), J97–J101.


Journal + Issues