Luminescence Properties and Decay Kinetics of Mn2+ and Eu3+ Co-Dopant Ions In MgGa2O4 Ceramics

Open access


The MgGa2O4 ceramics co-doped with Mn2+ and Eu3+ ions were synthesized via a high-temperature solid-state reaction technique. The samples with various Eu3+ concentrations were characterised using high-resolution photoluminescence (PL) spectroscopy. The PL spectra show weak matrix emission in a blue spectral region with dominant excitation band around 380 nm. Manganese ions are highly excited deeply in UV region and exhibit emission band peaked at 502 nm. The Eu3+ ions show characteristic f-f excitation and emission lines. The energy transfer between host defects and activator ions was observed. Luminescence decay curves of Mn2+ and Eu3+ emission showed complex kinetics with both Eu3+-ion concentration and excitation wavelength changes.

1. Brik, M. G., Suchocki, A., & Kaminska, A. (2014). Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorganic chemistry, 53(10), 5088–5099.

2. Suchocki, A., & Powell, R.C. (1988). Laser-induced grating spectroscopy of Cr3+-doped Gd3Ga5O12 and Gd3Sc2Ga3O12 crystals. Chemical Physics, 128(1), 59–71.

3. Matkovski, A., Durygin, A., Suchocki, A., Sugak, D., Neuroth, G., Walrafend, F., ... Solski, I. (1999). Photo and gamma induced color centers in the YAlO3 and YAlO3:Nd single crystals. Optical Materials, 12(1), 75–81.

4. Dimza, V., Popov, A. I., Lāce, L., Kundzins, M., Kundzins, K., Antonova, M., & Livins, M. (2017). Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Applied Physics, 17(2), 169–173.

5. Porotnikova, N. M., Anan’ev, M. V., & Kurumchin, E. K. (2011). Effect of defect structure of lanthanum manganite on oxygen exchange kinetics and diffusion. Russian Journal of Electrochemistry, 47(11), 1250–1256.

6. Porotnikova, N. M., Eremin, V. A., Farlenkov, A. S., Kurumchin, E. K., Sherstobitova, E. A., Kochubey, D. I., & Ananyev, M. V. (2018). Effect of AO segregation on catalytical activity of La0.7A0.3MnO3±δ (A= Ca, Sr, Ba) regarding oxygen reduction reaction. Catalysis Letters, 148(9), 2839–2847.

7. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Electronic structure of Mn3+Al and Mn2+Al-doped YAlO3: Prediction from the first principles. Optical Materials, 85, 162–166.

8. Klym, H., Ingram, A., Shpotyuk, O., Hadzaman, I., Solntsev, V., Hotra, O., & Popov, A. I. (2016). Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 42(7), 601–605.

9. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Atomic structure of manganese-doped yttrium orthoaluminate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 434, 6–8.

10. Porotnikova, N.M., Ananyev, M.V., Eremin, V.A., Molchanova, N.G., & Kurumchin, E.K. (2016). Effect of acceptor substitution in perovskites La1-xAxMnO3±δ (A = Ca, Sr, Ba) on the kinetics of interaction of gas-phase oxygen. Russian Journal of Electrochemistry, 52(8), 717–722.

11. Zhydachevskyy, Ya., Martynyuk, N., Popov, A.I., Sugak, D., Bilski, P., Ubizskii, S., … Suchocki, A. (2018). Thermally induced fading of Mn-doped YAP nanoceramics. Journal of Physics: Conference Series, 987(1), 012009.

12. Zhang, Y., Wu, Z., Geng, D., Kang, X., Shang, M., Li, X., … Lin, J. (2014). Full color emission in ZnGa2O4: Simultaneous control of the spherical morphology, luminescent, and electric properties via hydrothermal approach. Advanced Functional Materials, 24(42), 6581–6593.

13. Luchechko, A., & Kravets, O. (2017). Novel visible phosphors based on MgGa2O4-ZnGa2O4 solid solutions with spinel structure co-doped with Mn2+ and Eu3+ ions. Journal of Luminescence, 192, 11–16

14. Duan, X., Yu, F., & Wu, Y. (2012). Synthesis and luminescence properties of ZnGa2O4 spinel doped with Co2+ and Eu3+ ions. Applied Surface Science, 261, 830–834.

15. Huo, Q., Tu, W., & Guo, L. (2017). Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots. Optical Materials, 72, 305–312.

16. Polisadova, Е. F., Vaganov, V. А., Stepanov, S. A., Paygin, V. D., Khasanov, О. L., Dvilis, E. S., ... Kalinin, R. G. (2018). Pulse cathodoluminescence of the impurity centers in ceramics based on the MgAl2O4 spinel. Journal of Applied Spectroscopy, 85(3), 416–421.

17. Martynyuk, N.V., Ubizskii, S.B., Buryy, O.A., Becker, K.D., & Kreye, M. (2005). Optical in-situ study of the oxidation and reduction kinetics of Yb-substituted YAG epitaxial films. Physica Status Solidi C: Conferences, 2(1), 330–333.

18. Zhydachevskii, Y., Syvorotka, I.I., Vasylechko, L., Sugak, D., Borshchyshyn, I.D., Luchechko, A.P., … Suchocki, A. (2012). Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol-gel method. Optical Materials, 34(12), 1984–1989.

19. Luchechko, A., Kravets, O., Kostyk, L., & Tsvetkova, O. (2016). Luminescence spectroscopy of Eu3+and Mn2+ ions in MgGa2O4 spinel. Radiation Measurements, 90, 47–50.

20. Kirm, M., Feldbach, E., Lushchik, A., Lushchik, Ch., Maaroos, A., Savikhina, & T. (1997). Luminescent materials with photon multiplication. Optical Inorganic Dielectric Materials and Devices (eds. A. Krumins, D.K. Millers, A. Sternberg, J. Spigulis) Proc. SPIE, 2967, 18–23.

21. Lushchik, A., Lushchik, Ch., Kotlov, A., Kudryavtseva, I., Maaroos, A., Nagirnyi, V., & Vasil’chenko, E. (2004). Spectral transformers of VUV radiation on the basis of wide-gap oxides. Radiation Measurements, 38(4–6), 747–752.

22. Lushchik, A., Lushchik, C., Popov, A.I., Schwartz, K., Shablonin, E., & Vasil’chenko, E. (2016). Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 374, 90–96.

23. Lushchik, A., Dolgov, S., Feldbach, E., Pareja, R., Popov, A. I., Shablonin, E., & Seeman, V. (2018). Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 435, 31–37.

24. Kravets, O.P., Lys, R.M., Tsvetkova, O.V., Luchechko, A.P., & Pavlyk, B.V. (2018). Thermally stimulated luminescence and thermally stimulated depolarization currents in MgGa2O4 spinels. Journal of Physical Studies, 22(1), 1602.

25. Luchechko, A., Kravets, O., & Syvorotka, I.I. (2017). Optical and luminescence spectroscopy of zinc gallate phosphors codoped with manganese and europium ions. Spectroscopy Letters, 50(7), 404–410.

26. Luchechko, A., Kravets, O., Tsvetkova, O. (2017). Structure and optical-lumenescent characteristics of Mg1-xZnxGa2O4: Mn2+ ceramics. Journal of Nano- and Electronic Physics, 9(1), 01003.

27. Valiev, D., Khasanov, O., Dvilis, E., Stepanov, S., Polisadova, E., & Paygin, V. (2018). Luminescent properties of MgAl2O4 ceramics doped with rare earth ions fabricated by spark plasma sintering technique. Ceramics International, 44(17), 20768–20773.

28. Tsai, B. S., Chang, Y. H., & Chen, Y. C. (2006). Preparation and luminescent characteristics of Eu3+-activated MgxZn1−xGa2O4 nanocrystals. Journal of Alloys and Compounds, 407(1–2), 289–293.

29. Luchechko, A., & Kravets, O. (2017). Synthesis and luminescent properties of magnesium gallate spinel doped with Mn2+ and Eu3+ ions. Physica Status Solidi С, 14(1–2), 1600146.

30. Luchechko, A., Zhydachevskyy, Y., Maraba, D., Bulur, E., Ubizskii, S., & Kravets, O. (2018). TL and OSL properties of Mn2+-doped MgGa2O4 phosphor. Optical Materials, 78, 502–507.

31. Takesada, M., Osada, M., & Isobe, T. (2009). Glycothermal synthesis and photoluminescence of MgGa2O4: Mn2+ nanophosphors: Comparison to ZnGa2O4: Mn2+ nanophosphors. Journal of the Electrochemical Society, 156(5), J97–J101.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 174 23
PDF Downloads 122 122 18