AB Initio Calculations of CUN@Graphene (0001) Nanostructures for Electrocatalytic Applications

Open access


Substitution of fossil-based chemical processes by the combination of electrochemical reactions driven by sources of renewable energy and parallel use of H2O and CO2 to produce carbon and hydrogen, respectively, can serve as direct synthesis of bulk chemicals and fuels. We plan to design and develop a prototype of electrochemical reactor combining cathodic CO2-reduction to ethylene and anodic H2O oxidation to hydrogen peroxide. We perform ab initio calculations on the atomistic 2D graphene-based models with attached Cu atoms foreseen for dissociation of CO2 and H2O containing complexes, electronic properties of which are described taking into account elemental electrocatalytical reaction steps. The applicability of the model nanostructures for computer simulation on electrical conductivity of charged Cun/graphene (0001) surface is also reported.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kuhl K. P. Cave E. R. Abram D. N. & Jaramillo T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5 7050–7059.

  • 2. Zhang Y.-J. Sethuraman V. Michalsky R. & Pereson A. A. (2014). Competition between CO reduction and H evolution on transition-metal electrocatalysts. ACS Catal.4 3742–3748.

  • 3. Reske R. Mistry H. Behafarid F. Cuenya B. R. Strasser P. (2014). Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles. J. Am. Chem. Soc.136 6978–6986.

  • 4. Zhu W. Zhang Y.-J. Zhang H. Lv H. Li Q. Michalsky R. Peterson A. A. & Sun S. (2014). Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc.136 16132–16135.

  • 5. Mistry H. Varela A. S. Kuehl S. Strasser P. & Cuenya B. R. (2016). Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater.1 16009.

  • 6. Ren D. Deng Y. Handoko A. D. Chen C. S. Malkhandi S. & Yeo B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal.5 2814–2821.

  • 7. Mistry H. Varela A. S. Bonifacio C. S. ZegkinoglouI. Sinev I. Choi Y.-W. … Cuenya B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun.7 12123.

  • 8. Giannozzi P. Baroni S. Bonini N. Calandra M. Car. R. Cavazzoni C. … Wentzcovitch M. (2017). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matt.29 465901.

  • 9. Perdew J. P. Burke K. & Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett.77 3865–3868.

  • 10. Kresse G. J. & Jouber D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B59 1758–1775.

  • 11. Monkhorst H. J. & Pack J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B13 5188–5192.

  • 12. Otani M. & Sugino O. (2006). First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B73 115407.

Journal information
Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 110 5
PDF Downloads 110 69 4