Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO

Open access


X-ray absorption spectroscopy at the Cu K-edge is used to study X-ray induced photoreduction of copper oxide to metallic copper. Although no photoreduction has been observed in microcrystalline copper oxide, we have found that the photoreduction kinetics of nanocrystalline CuO depends on the crystallite size, temperature and pressure. The rate of photoreduction increases for smaller nanoparticles but decreases at low temperature and higher pressure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhang Q. Zhang K. Xu D. Yang G. Huang H. Nie F. …Yang S. (2014). CuO nanostructures: Synthesis characterization growth mechanisms fundamental properties and applications. Prog. Mater. Sci. 60 208–337. DOI: 10.1016/j.pmatsci.2013.09.003

  • 2. Frenkel A. I. Rodriguez J. A. & Chen J. G. (2012). Synchrotron techniques for in situ catalytic studies: Capabilities challenges and opportunities. ACS Catal. 2 2269–2280. DOI: 10.1021/cs3004006

  • 3. Volanti D. P. Felix A. A. Suman P. H. Longo E. Varela J. A. & Orlandi M. O. (2015). Monitoring a CuO gas sensor at work: An advanced in situ X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys.17 18761–18767. DOI: 10.1039/C5CP02150B

  • 4. Lin F. Liu Y. Yu X. Cheng L. Singer A. Shpyrko O. G. … Doeff M. M. (2017). Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev.117 13123–13186. DOI: 10.1021/acs.chemrev.7b00007

  • 5. Liguang W. Jiajun W. & Pengjian Z. (2018). Probing battery electrochemistry with in operando synchrotron X-ray imaging Techniques. Small Methods 1700293. DOI: 10.1002/smtd.201700293

  • 6. Joshi S. Patil S. Iyer V. & Mahumuni S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10 1135–1144. DOI: 10.1016/S0965-9773(98)00153-6

  • 7. Yamaguchi A. Okada I. Fukuoka T. Ishihara M. Sakurai I. & Utsumi Y. (2016). One-step synthesis of copper and cupric oxide particles from the liquid phase by X-ray radiolysis using synchrotron radiation. J. Nanomater. 2016 8584304. DOI: 10.1155/2016/8584304

  • 8. Oyanagi H. Sun Z. H. Jiang Y. Uehara M. Nakamura H. Yamashita K. … Maeda H. (2012). Small copper clusters studied by X-ray absorption near-edge structure. J. Appl. Phys.111 084315. DOI: 10.1063/1.3700346

  • 9. Jayanetti S. Mayanovic R. A. Anderson A. J. Bassett W. A. & Chou I. M. (2001). Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2. J. Chem. Phys.115 954–962. DOI: 10.1063/1.1379758

  • 10. Lee H. J. Je J. H. Hwu Y. & Tsai W. (2003). Synchrotron X-ray induced solution precipitation of nanoparticles. Nucl. Instrum. Methods Phys. Res. B 199 342–347. DOI: 10.1016/S0168-583X(02)01561-6

  • 11. Oyanagi H. Orimoto Y. Hayakawa K. Hatada K. Sun Z. Zhang L. … Maeda H. (2014). Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci. Rep. 4 7199. DOI: 10.1038/srep07199

  • 12. Mukherjee S. Fauré M. C. Goldmann M. & Fontaine P. (2015). Two step formation of metal aggregates by surface X-ray radiolysis under langmuir monolayers: 2D followed by 3D growth. Beilstein J. Nanotechnol. 6 2406–2411. DOI: 10.3762/bjnano.6.247

  • 13. Jonah C. D. (1995). A short history of the radiation chemistry of water. Radiat. Res. 144 141–147. DOI: 10.2307/3579253

  • 14. Le Caer S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water3 235–253. DOI: 10.3390/w3010235

  • 15. Kuzmin A. Anspoks A. Kalinko A. Rumjancevs A. Timoshenko J. Nataf L. … Irifune T. (2016). Effect of pressure and temperature on the local structure and lattice dynamics of copper(II) oxide. Phys. Procedia85 27–35. DOI: 10.1016/j.phpro.2016.11.077

  • 16. Tran T. H. & Nguyen V. T. (2014). Copper oxide nanomaterials prepared by solution methods some properties and potential applications: A brief review. Int. Sch. Res. Notices2014 856592. DOI: 10.1155/2014/856592

  • 17. Rietveld H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr.22 151–152. DOI: 10.1107/S0365110X67000234

  • 18. Doebelin N. & Kleeberg R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48 1573–1580. DOI: 10.1107/S1600576715014685

  • 19. Yamada H. Zheng X. G. Soejima Y. & Kawaminami M. (2004). Lattice distortion and magnetolattice coupling in CuO. Phys. Rev. B69 104104. DOI: 10.1103/PhysRevB.69.104104

  • 20. Baudelet F. Kong Q. Nataf L. Cafun J. D. Congeduti A. Monza A. … Itié J. P. (2011). ODE: A new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Pressure Res. 31 136–139. DOI: 10.1080/08957959.2010.532794

  • 21. Tetsuo I. Ayako K. Shizue S. Toru I. & Hitoshi S. (2003). Materials: Ultrahard polycrystalline diamond from graphite. Nature421 599–600. DOI: 10.1038/421599b

  • 22. Ishimatsu N. Matsumoto K. Maruyama H. Kawamura N. Mizumaki M. Sumiya H. & Irifune T. (2012). Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Rad.19 768–772. DOI: 10.1107/S0909049512026088

  • 23. Bianchi A. E. Plivelic T. S. Punte G. & Torriani I. L. (2008). Probing the structure of nanograined CuO powders. J. Mater. Sci.43 3704–3712. DOI: 10.1007/s10853-008-2600-7

Journal information
Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 2
PDF Downloads 116 116 4