First-Principles Modelling of N-Doped Co3O4

Open access


N-doped Co3O4 is a promising electrocatalyst. By means of first-principles calculations, various concentrations and spatial arrangements of NO atoms were modelled. Mutual interaction of the dopant atoms was analysed with respect to single NO atom. Charge redistribution, caused by doping, was calculated.

1. Cook, T., Dogutan, D., Reece, S., Surendranath, Y., Teets, T., & Nocera, D. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 110(11), 6474–6502.

2. Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis, 2(8), 1765–1772.

3. Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., & Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. The Journal of Physical Chemistry C, 114(50), 22245–22253.

4. Chen, J., & Selloni, A. (2012). Water adsorption and oxidation at the Co3O4 (110) surface. The Journal of Physical Chemistry Letters, 3(19), 2808–2814.

5. Liao, P., Keith, J., & Carter, E. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. Journal of the American Chemical Society, 134(32), 13296–13309.

6. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., & Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today, 120(2), 145–150.

7. García-Mota, M., Vojvodic, A., Metiu, H., Man, I., Su, H.-Y., Rossmeisl, J., & Nørskov, J. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem, 3(10), 1607–1611.

8. Kaptagay, G., Inerbaev, T., Mastrikov, Y., Kotomin, E., & Akilbekov, A. (2015). Water interaction with perfect and fluorine-doped Co3O4 (100) surface. Solid State Ionics, 277, 77–82.

9. Xu, L., Wang, Z., Wang, J., Xiao, Z., Huang, X., Liu, Z., & Wang, S. (2017). N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 28(16), 165402.

10. Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138.

11. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186.

12. Blöchl, P. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953–17979.

13. Perdew, J., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868.

14. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., & Sutton, A. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57(3), 1505–1509.

15. Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. Journal de Physique et le Radium, 1(11), 377–400.

16. Monkhorst, H., & Pack, J. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192.

17. R. F. Bader, R. F. (1990). Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford.

18. Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354–360.

19. Yu, M., & Trinkle, D. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111.

20. Villars Pierre and Cenzual, K. (Ed.). (n.d.). Co3O4 Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012” in SpringerMaterials Available at

21. Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS). Switzerland & National Institute for Materials Science (NIMS), Japan.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 4
PDF Downloads 65 65 4