Finding Electron-Hole Interaction in Quantum Kinetic Framework

E. Klotins 1
  • 1 Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia


The article presents a quantum kinetic framework to study interacting quan¬tum systems. Having the constituting model Hamiltonians of two-band semiconductor and the photoexcited electron-hole pair, their quantum kinetic evolution has been revi-sited. Solution to this nonlinear problem of electron-hole interaction is obtained making use of the self-consistency loop between the densities of photoexcited electrons and holes and the pairwise interaction terms in the constituting model Hamiltonians. In the leading order, this approach supports the required isomorphism between the pairwise interaction and the birth and annihilation operators of the photoexcited electrons and holes as a desirable property. The approach implies the Hilbert space and the tensor product mathematical techniques as an appropriate generalization of the noninteracting electron-hole pair toward several-body systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pervushin, V.N., Skokov, V.V., Reichel, A.V., Smolyansky, S.A., & Prozorkevich, A.V. (2005). The kinetic description of vacuum particle creation in the oscillator representation. Int. J. Mod. Phys. A20, 5689–5704.

  • 2. Smolyansky, S.A., Tarakanov, A.V., & Bonitz, M. (2009). Vacuum particle creation: analogy with the Bloch theory in solid state physics. Contrib. Plasma Phys., 49, 575–584. DOI 10.1002/ctpp.200910058S

  • 3. Smolyansky, S.A., Bonitz, M., & Tarakanov, A.V. (2010). Strong field generalization of the interband transitions kinetics. Physics of Particles and Nuclei, 41, 1075–11078. DOI 10.1134/S106377961007021X

  • 4. Pervushin, V.N., & Skokov, V.V. (2006). Kinetic description of fermion production in the oscillator representation. Acta Physica Polonica B, 37, 2587–2600.

  • 5. Friesen, A.V., Prozorkevich, A.V., Smolyansky, S.A., & Bonitz, M. (2007). Nonperturbative kinetics of electron-hole excitations in strong electric field. Proc. SPIE 6537, Laser Physics and Photonics, Spectroscopy and Molecular Modeling V II, 653701. doi:10.1117/12.754724

  • 6. Von Neumann, J. (1932/1996). Mathematical foundations of quantum mechanics, Princeton landmarks in mathematics. Princeton University Press. ISBN 978-0-691-02893-4, MR 1435976

  • 7. Fedotov, A.M., Gelfer, E.G., Korolev, K.Yu., & Smolyansky, S.A. (2011). Kinetic equation approach to pair production by a time-dependent electric field. Physical Review D, 83(2), id. 025011. DOI:10.1103/PhysRevD.83.025011

  • 8. Grib A.A., Mamaev, S.G., & Mostepanenko, V.M. (1994). Vacuum quantum effects in strong fields [in Russian], Energoatomizdat, M. (1988); English transl., Friedmann Laboratory Publishing, St. Petersburg (1994).

  • 9. Schmidt, S. M., Blaschke, D., Röpke, G., Smolyansky, S.A., Prozorkevich A.V., & Toneev, V.D. (1998). A quantum kinetic equation for particle production in the Schwinger mechanism. Int. J. Mod. Phys., E7, 709–722.

  • 10. Schmidt, S.M., Blaschke, D., Röpke, G., Prozorkevich, A.V., Smolyansky, S.A., & Toneev V.D. (1999). Non-Markovian effects in strong-field pair creation. Phys. Rev. D59, 094005.

  • 11. Blaschke, D.B., Smolyansky, S.A., Panferov, A., & Juchnowski, L. (2017). Particle production in strong time-dependent fields. arXiv:1704.04147v1 [hep-ph] 28 Mar 2017.

  • 12. Álvarez-Gaumé, L., & Vázques-Mozo, M.Á. (2012). An invitation to quantum fieldtheory. Lecture Notes in Physics 839. DOI:10.1007/978-3-642-23728-7_2, Berlin: Springer Verlag.

  • 13. Schwabl, F. (2005). Advanced quantum mechanics. Berlin: Springer Verlag.


Journal + Issues