Effectiveness of the Tooth Zone of Inductor Electric Machine

A. Serebryakov 1 , E. Kamolins 1 , K. Gulbis 1 ,  and K. Sejejs 1
  • 1 Riga Technical University, , LV-1048, Riga, Latvia

Abstract

The authors consider several tens of rotor tooth and slot profiles for the inductor electric machine in order to gain the maximum EMF of the armature winding at the minimum of highest harmonics, owing to which the specific power and efficiency of the machine can be raised.

The research considers usage of analytical methodology and finite element method (FEM), where the latter includes magnetic saturation and actual magnetic field line distribution.

The main data of both calculations are summarised in the results of the study. From the obtained results, it can be concluded that, in most cases, the analytical method is not applicable to the qualitative determination of the highest harmonic content of the EMF, since the plane of the magnetic field lines does not close in parallel and their distribution is directly related to the configuration of the teeth zone.

The possibility of using the inductor generators for direct connection to the grid is demonstrated in the study.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhezherin, R. (1961). Inductor generators. Moscow: GEI (in Russian).

  • 2. Aleksejeva, M. M. (1967). Machine generators with increased frequencies. Latvia: Energija.

  • 3. Dombur, L. E. (1984). Axial inductor generators. Riga: Zinatne.

  • 4. Steven, A. E. (2010). Salient pole shoe shapes of interior permanent magnet synchronous machines. In 2010 XIX International Conference on Electrical Machines (ICEM), Rome, Italy: IEEE.

  • 5. Deaconu, S. I., Tulelea, L., Popa, G. N., Popa, I., & Abrudean, C. (2008). Optimizing the design of a reactive homopolar synchronous machine with stator excitation. Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, Orlando, FL, USA: IEEE.

  • 6. Kutt, F., Michna, M., Kostro, G., Ronkowski, M., & Adamczyk, D. (2014). Synchronous generator model taking into account the non-uniform saturation of the pole shoes. In 2014 International Conference on Electrical Machines (ICEM), Berlin: IEEE.

  • 7. Boldea, I. (2006). Synchronous generators. Boca Raton, FL: CRC Press.

  • 8. Pyrhönen, J., Jokinen, T., & Hrabovcova, V. (2008). Design of rotating electrical machines. Chichester: John Wiley & Sons, Ltd.

  • 9. Santalov, A. M., & Serebryakov, A.D. (1976). On the optimal geometry of the tooth zone of inductor machines. In Proceedings of RKIIGA (Vol. 113, pp. 12–23). Riga (in Russian).

  • 10. Levin, N. N., & Serebrjakov, A. D. (1976). Electrical machines and devices. Riga.

  • 11. Serebrjakov, A. D. (1982). Optimal tooth zone of inductor motor – Brushless electrical machines. Riga: Zinatne.

  • 12. Levin, N. N., & Serebrjakov, A. D. (1974). Tooth zone parameter influence on speed of response for motionless electrical motor. Riga.

  • 13. Buls, B.K. (1964). The basics of theory and calculations for magnetic field. Moscow: Energija.

  • 14. Bronstein, I. N. (1957). Handbook of mathematics. Moscow: Gostekhizdat.

  • 15. Flux2D software, (2016). [Online]. Available at http://www.cedrat.com.

  • 16. Gulbis, K., & Kamolins, E. (2017). Investigation of synchronous inductor generator with electrically integrated armature and excitation windings for AC and DC power supply. In 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia: IEEE.

  • 17. EN 50160:2010, (2010). Voltage characteristics of electricity supplied by public electricity networks.

OPEN ACCESS

Journal + Issues

Search