Measurement of Low Concentration of Nanosized Objects Suspended in a Liquid Medium

D. Merkulovs 1 , O. Vilitis 2 , and V. Kozlovs 3
  • 1 Institute of Physical Energetics, , LV-1006, Riga, Latvia
  • 2 Institute of Solid State Physics, University of Latvia, LV-2130, Riga, Latvia
  • 3 Institute of Microbiology and Virology, Riga Stradins University, Science Hub “Kleisti”, LV-1067, Riga, Latvia


The new optical scheme of refractometer with temperature stabilisation 10−2 °C is developed, which allows measuring a refractive index of the sample with accuracy not worse than 10−5; dependence of refraction index on concentration of SiO2 nanoparticles in liquid suspension is obtained within the framework of the research.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Hoo, C. M., Starostin, N., West, P., & Mecartney, M. L. (2008). Comparison of AFM and DLS methods to characterize nanoparticles size distribution. J. Nanoparticles Res., 89–96.

  • 2. Ioffe, B.V. (1974). Refractometric methods in chemistry (2nd ed.). Khimya. (in Russian).

  • 3. Kozlov, V., Merkulov, D., & Merkulova, V. (2016). Determination of concentration of nanoparticles in liquids by laser-diode refractometer. Book of Abstracts of 19th International Conference on Quantum Electronics “Laser physics and applications” Sozopol, Bulgaria, 91–92.

  • 4. Vilitis, O., Merkulovs, D., & Kozlovs, V. (2017). Measurement of low concentration of nanosized objects in bioliquids by means of refractometric methods. In Proceedings of the 13th International Conference on Medical Physics “Medical physics in the Baltic states”, Kaunas, Lithuania (pp. 132–136).

  • 5. Vilitis, O., Merkulov, D., & Kozlov, V. (2003). Method and refractometer for measuring refractive index of liquids. Patent LV13294 B.

  • 6. Vilitis, O., & Merkulov, D. (2006). Method for detecting optical image of the light beam in refractometer. Patent LV 13598 B.

  • 7. Vilitis, O., Merkulov, D., & Shipkovs, P. (2007). Method and sensor for measuring concentration of liquids. Patent LV 13728B.

  • 8. Vilitis, O., Shipkovs, P., & Merkulov, D. (2008). Determination of refractive index of liquids using a cylindrical cuvette. Latv.J.Phys.Technol.Sci. 3, 50–62.

  • 9. Vilitis, O., Shipkovs, P., & Merkulovs, D. (2009). Determining the liquids refractive index by using a cylindrical cuvette. Measurements Science and Technology, 20, 117001, doi:10.1088/0957-0233/20/11/117001.

  • 10. Jackson, J. D. (1998). Classic electrodynamics (3rd ed.). New York: John Wiley & Sons.

  • 11. Bohren, G.F., & Huffman, D.R. (1983). Absorption and scattering of light by small particles. New York: John Wiley & Sons.

  • 12. Novotny, L., & Hecht, B. (2006). Principles of nanooptics. Cambridge: Cambridge University Press.

  • 13. Landau, L., & Lifsitz, E. (1982). Electrodynamics of continuous media. Nauka. (in Russian).


Journal + Issues