An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

J. Lungevics 1 , 2 , E. Jansons 1 , 2 , and K. A. Gross 1
  • 1 Biomaterials Research Laboratory, Riga Technical University, LV-1048, Riga, Latvia
  • 2 Institute of Mechanical Engineering, Riga Technical University, LV-1006, Riga, Latvia


The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Maeno, N., Arakawa, M., Yasutome, A., Mizukami, N., & Kanazawa, S. (2003). Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can. J. Phys., 81, 241–249. doi:10.1139/P03-023.

  • 2. Maeno, N., & Arakawa, M. (2004). Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95, 134–139. doi:10.1063/1.1633654.

  • 3. Ling, E.J.Y., Uong, V., Renault-Crispo, J.S., Kietzig, A.M., & Servio, P. (2016). Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and topography effects. ACS Appl. Mater. Interfaces, 8, 8789–8800. doi:10.1021/acsami.6b00187.

  • 4. Sukhorukov, S., & Marchenko, A. (2014). Geometrical stick-slip between ice and steel. Cold Reg. Sci. Technol, 100, 8–19. doi:10.1016/j.coldregions.2013.12.007.

  • 5. Kietzig, A.-M., Hatzikiriakos, S.G., & Englezos, P. (2010). Physics of ice friction. J. Appl. Phys., 107, 81101. doi:10.1063/1.3340792.

  • 6. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2009). Ice friction: The effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys., 106, 24303. doi:10.1063/1.3173346.

  • 7. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2010). Ice friction: The effect of thermal conductivity. J. Glaciol., 56, 473–479. doi:10.3189/002214310792447752.

  • 8. Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., & Valeri, S. (2016). Friction of rough surfaces on ice: Experiments and modeling. Wear, 368–369, 258–266. doi:10.1016/j.wear.2016.10.001.

  • 9. Paliy, M., Braun, O.M., & Consta, S. (2006). The friction properties of an ultrathin confined water film. Tribol. Lett., 23, 7–14. doi:10.1007/s11249-006-9104-x.

  • 10. Baurle, L., Kaempfer, T.U., Szabo, D., & Spencer, N.D. (2007). Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Reg. Sci. Technol., 47, 276–289. doi:10.1016/j.coldregions.2006.10.005.

  • 11. Ducret, S., Zahouani, H., Midol, A., Lanteri, P., & Mathia, T.G. (2005). Friction and abrasive wear of UHWMPE sliding on ice. Wear, 26–31. doi:10.1016/j.wear.2004.09.026.

  • 12. Makkonen, L., & Tikanmaki, M. (2014). Modeling the friction of ice. Cold Reg. Sci. Technol., 102, 84–93. doi:10.1016/j.coldregions.2014.03.002.

  • 13. Rohm, S., Hasler, M., Knoflach, C., van Putten, J., Unterberger, S.H., Schindelwig, K., Lackner, R., & Nachbauer, W. (2015). Friction Between steel and snow in dependence of the steel roughness. Tribol. Lett., 59, 27. doi:10.1007/s11249-015-0554-x.

  • 14. Hasler, M., Schindelwig, K., Mayr, B., Knoflach, C., Rohm, S., van Putten, J., & Nachbauer, W. (2016). A novel ski–snow tribometer and its precision. Tribol. Lett., 63, 33. doi:10.1007/s11249-016-0719-2.

  • 15. Jansons, E., Lungevics, J., & Gross, K.A. (2016). Surface roughness measure that best correlates to ease of sliding. Eng. Rural Dev.


Journal + Issues