Stability and the Electronic Structure of XB2 (X = Pt, Ir, Pd, Rh, Os) Diborides

Open access

Abstract

First-principle calculations have been performed to investigate the structural and electronic properties of platinum group metal diborides in the stoichiometry XB2 (X = Pt, Ir, Pd, Rh, Os). All investigated compounds have shown to belong to the orthorhombic Pmmn space group rather than the C2/m previously predicted in some of the compositions. Compressibility will reduce with boron addition in Pt, Pd and Rh, but will increase with boron addition into Ir and Os. The electronic density of states show that all the compounds are metals, with PtB2, PdB2 and OsB2 being potentially incompressible and superhard materials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Thornton A. & Wilks G. (1978). Clean surface reactions between diamond and steel. Nature 274 792 – 793.

  • 2. Solozhenko V. L. Andrault D. Fiquet G. Mezouar M. & Rubie D. C. (2001). Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78(10) 1385-1387.

  • 3. Haines J. Léger J. M. & Bocquillon G. (2001). Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res. 31(1) 1-23.

  • 4. Kaner R. B. Gilman J. J. & Tolbert S. H. (2005). Materials science. Designing superhard materials. Science 308 1268-1269.

  • 5. Hebbache M. & Zemzemi M. (2004). Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Phys. Rev. B 70 224107.

  • 6. Roof R. B. Jr. & Kempter C. P. (1962). New orthorhombic phases in the Ru-B and Os-B. J. Chem. Phys. 37(7) 1473 – 1478.

  • 7. Stuparevic L. & Zivkovic D. (2004). Phase diagram investigation and thermodynamic study of OsB system. J. Ther. Anal. Calori. 76(3) 975-983.

  • 8. Cumberland R. W. Weinberger M. B. Gilman J. J. Clark S. M. Tolbert S. H. & Kaner R. B. (2005). Osmium diboride an ultra-incompressible hard material. J. Am. Chem. Soc. 127 7264 – 7265.

  • 9. Wang D. Y. Wang B. & Wang Y. X. (2012). New crystal structures of IrB and IrB2: First-principles calculations. J. Phys. Chem. C 116 21961 – 21966.

  • 10. Chu B. Li D. Bao K. Tian F. Duan D. Sha X. & Cui T. (2014). The crystal structure of IrB2: A first-principle calculation. RSC Adv. 4 63442 – 63446.

  • 11. Chu B. Li D. Bao K. Tian F. Duan D. Sha X. Liu Y. & Cui T. (2015). Structural mechanical and electronic properties of Rh2B and RhB2: First-principles calculations. Scientific Reports 5 doi: 10.1038/srep10500.

  • 12. Wolff I.M. & Hill P.J. (2002). Platinum Metals-Based Intermetallics for High-Temperature Service. Platinum Metals Review 44(4) 158-166.

  • 13. Haines J. Léger J. M. & Atouf A. (1995). Crystal Structure and Equation of State of Cotunnite-Type Zirconia. J. Am. Ceram. Soc. 78(2) 445-448.

  • 14. Teter D.M. (1998). Computational Alchemy: The Search for New Superhard Materials. Mater. Res. Soc. Bull. 23(1) 22-27.

  • 15. Lundin U. Fast L. Nordstrom L. Johansson B. Wills J. M. & Eriksson O. (1998). Transition-metal dioxides with a bulk modulus comparable to diamond. Phys. Rev. B 57 4979-4982.

  • 16. Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. & Wentzcovitch R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys: Cond. Matt. 21(39) 395502.

  • 17. Perdew J.P. Burke K. & Ernzerhof M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters 77 3865.

  • 18. Monkhorst H.J. & Pack J.D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B 13 5188 – 5192.

  • 19. Birch F. (1947). Finite Elastic Strain of Cubic Crystal. Phys. Rev. 71 809-824.

  • 20. Staple C. Mannstadt W. Asahi R. & Freeman A.J. (2001). Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA GGA and screened-exchange LDA FLAPW calculations. Phys. Rev. B 63(15) 155106(1-11).

  • 21. James A.M. & Lord M.P. (1992). Macmillan’ s Chemical and Physical Data London: Macmillan.

  • 22. Kaye G.W.C. & Laby T. H. (1993). Tables of physical and chemical constants (15th ed.) London: Longman.

Search
Journal information
Impact Factor


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 82 5
PDF Downloads 109 51 1