Nitrogen Adsorption on Graphene Sponges Synthesized by Annealing a Mixture of Nickel and Carbon Powders

Open access


Adsorption by graphene sponge (GS) manufactured by annealing nickel-carbon powder mixture in inert atmosphere has been studied. By determining the specific surface area (SSA) for the GS sample, it has been found that Brunauer, Emmett, Teller method (BET) of approximation of experimental isotherms gives wrong results in the pressure range of 0.025–0.12 because adsorption in this pressure region is affected by walls of ampoule. Real SSA value has been found by subtracting pore effect method (SPE) or by BET approximation in a low range of relative pressure of 0.0004–0.002.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Grehov V. Kalnacs J. Mishnev A. & Kundzins K. (2016). Synthesis of graphenic carbon materials on nickel particles with controlled quantity of carbon. Latvian Journal of Physics and Technical Sciences 53 56–12.

  • 2. Schiith F. Sing K. & Weitkamp J. (eds.) (2002). Handbook of Porous Solids. Weinheim: Wiley-VCH Verlag GmbH.

  • 3. Bottani E.J. & Tascon J.M.D. (eds.) (2008). Adsorption by Carbons. Elsevier Ltd.

  • 4. Inagaki M. Qiu J. & Guo Q. (2015). Carbon foam: Preparation and application. Carbon87 128–152.

  • 5. Wu R. Yu B. Liu X. Li H. Wang W. Chen L. … Yang S.T. (2016). One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Appl. Surf. Sci. 362 56–63.

  • 6. Novoselov K.S. Geim A.K. Morozov S.V. Jiang D. Zhang Y Dubonos S.V. Firsov A.A. (2004). Electric field effect in atomically thin carbon films. Science306 666–669.

  • 7. Sun H. Zhen Xu Z. & Gao Ch. (2013). Multifunctional ultra-flyweight synergistically assembled carbon aerogels. Advanced Materials 25 2554-2560.

  • 8. Grehov V. Kalnacs J. Matzui L. Knite M. Murashov A. & Vilken A. (2013). Nitrogen adsorption by thermoexfoliated graphite. Latvian Journal of Physics and Technical Sciences50 58-66.

  • 9. Grehov V. Kalnacs J. Vilken A. Mishnev A. Knite M. & Kundzins K. (2015). Structural investigation of graphenic carbon materials obtained on nickel particles. FM&NT-2015 Functional Materials and Nanotechnologies 115–115.

  • 10. Tynan M.K. Johnson D.W. Dobson B.P. & Coleman K.S. (2016). Formation of 3D graphene foams on soft templated metal monoliths. Nanoscale 8 13303-13310.

  • 11. Darmstadt H. & Roy C. (2001). Comparative investigation of defects on carbon black surfaces by nitrogen adsorption and SIMS. Carbon 39 841–849.

  • 12. Kruk M. Li Z. Jaroniec M. & Betz W.R. (1999). Nitrogen adsorption study of surface properties of graphitized carbon blacks. Langmuir15 1435–1441.

  • 13. Sing K.S.W. Everett D.H. Haul R.A.W. Moscou L. Pierotti A. Rouquerol J. & Siemieniewska T. (1985). Reporting physisorption data for gas/solid systems. Pure & App Chem57(4) 603–619.

  • 14. Ohba T. Takase A. Ohyama Y. & Kanoh H. (2013). Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon 61 40–47.

  • 15. Setoyama N. Suzuki T. & Kaneko K. (1998). Simulation study on the relationship between a high resolution a-s plot and pore size distribution for activated carbon. Carbon 36 1459–1467.

  • 16. Brunauer S. Emmett P. & Teller E. (1938). Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc. 60 309–319.

  • 17. Грег C. & Синг К. (1984). Адсорбция удельная поверхность пористость. Москва: МИР.

  • 18. Kaneko K. Ishii C. Ruike M. & Kuwabara H. (1992). Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon30 1075–1088.

  • 19. Silvestre-Albero A. Silvestre-Albero J. Martínez-Escandell M. Futamura R. Itoh T. Kaneko K. & Rodríguez-Reinoso F. (2014). Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption. Carbon66 699–794.

  • 20. Grehov V. Kalnacs J. Vilken A. Mishnev A. Chikvaidze G. Knite M. & Saharov D. (2014). Graphene Nanosheets Grown on Ni Particles. RCBJSF-2014-FM&NT 303-303.

Journal information
Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 166 9
PDF Downloads 122 83 8