Nanoindentation Response Analysis of Thin Film Substrates-II: Strain Hardening-Softening Oscillations in Subsurface Layer

Open access

Abstract

We have extracted stress-strain field (SSF) gradient and divergence representations from nanoindentation data sets of bulk solids often used as thin film substrates: bearing and tooling steels, silicon, glasses, and fused silica. Oscillations of the stress-strain field gradient and divergence induced in the subsurface layer by the nanoindentation have been revealed. The oscillations are especially prominent in single indentation tests at shallow penetration depths, h<100 nm, whereas they are concealed in the averaged datasets of 10 and more single tests. The amplitude of the SSF divergence oscillations decays as a sublinear power-law when the indenter approaches deeper atomic layers, with an exponent −0.9 for the steel and −0.8 for the fused silica. The oscillations are interpreted as alternating strain hardening-softening plastic deformation cycles induced in the subsurface layer under the indenter load.

1. Fischer-Cripps, A. (2004). Nanoindentation. New York: Springer-Verlag.

2. Oyen, M.L., & Cook, R.F. (2009). A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed., 2, 396–407.

3. Guo, Y.B., & Warren, A.W. (2005). Microscale mechanical behavior of the subsurface by finishing processes. J. Manuf. Sci. Eng., 126, 333–338.

4. Warren, A.W., Guo, Y.B., & Weaver, M.L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf. Coat. Tech., 200, 3459–3467.

5. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., & Schmid, C.F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA, 103, 6184–6189.

6. Sangwal, K. (2000). On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys., 63, 145–152.

7. Kanders, U., & Kanders, K. (2017). Nanoindentation response analysis of thin film substrates-I: Strain gradient-divergence approach. Latv. J. Phys. Tech. Sci., 54(1), 66–76, DOI: 10.15.15/lpts-2017-0007

8. Klaumuenzer, D., Maass, R., & Loeffler, J.F. (2011). Stick-slip dynamics and recent insights into shear banding. J. Mater. Res., 26, 1453–1463.

9. Schuh, C.A., & Nieh, T.G. (2003). A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater., 51, 87–99.

10. Chakraborty, R., Dey, A., & Mukhopadhyay, A.K. (2010). Loading rate effect on nanohardness of soda-lime-silica glass. Metall. Mater. Trans. A 41, 1301–1312.

11. Hay, J.L., Agee, P., & Herbert, E.G. (2010). Continuous stiffness measurement during instrumented indentation testing. Exp. Techniques, 34, 86–94.

12. Oliver, W., & Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res., 19, 3–20.

13. Li, H., Ngan, A.H.W., & Wang, M.G. (2005). Continuous strain bursts in crystalline and amorphous metals during plastic deformation by nanoindentation. J. Mater. Res., 20, 3072–3081.

14. Maniks, J., Mitin, V., Kanders, U., Kovalenko, V., Nazarovs, P., Baitimirova, M., Meija, R., Zabels, R., Kundzins, K., & Erts, D. (2015). Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Tech., 276, 279–285.

15. Kanders, U., Kanders, K., Maniks, J., Mitin, V., Kovalenko, V., Nazarovs, P., & Erts, D. (2015). Nanoindentation response analysis of Cu-rich carbon–copper composite films deposited by PVD technique. Surf. Coat. Tech., 280, 308–316.

16. Siu, K.W., & Ngan, A.H.W. The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag., 93, 449–467.

17. Beilby, G. (1921). Aggregation and Flow of Solids. London: Macmillan.

18. Bhushan, B. (Ed.) (2001). Modern Tribology Handbook. CRC Press.

19. Lloyd, S.J., Castellero, A., Giuliani, F., Long, Y., McLaughlin, K.K., Molina-Aldareguia, J.M., Stelmashenko, N.A., Vandeperre, L.J., & Clegg, W.J. (2005). Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc. A, 461, 2521–2543.

20. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., & Embury, J.D. (1998). Structure and mechanical properties of Cu-X (X= Nb, Cr, Ni) nanolayered composites. Scripta Mater., 39, 555–560.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 95 8
PDF Downloads 74 53 4