Nanoindentation Response analysis of Thin Film Substrates-I: Strain Gradient-Divergence Approach

  • 1 Institute of Mechanical Engineering, Riga Technical University, 6 Ezermalas Str., LV-1006, Riga, Latvia
  • 2 Institute of Neuroinformatics, University & ETH of Zurich, 190 Winterthurerstr., CH-8057 Zurich, Switzerland


Nanoindentation is a widely-used method for sensitive exploration of the mechanical properties of micromechanical systems. We derive a simple empirical analysis technique to extract stress-strain field (SSF) gradient and divergence representations from nanoindentation data sets. Using this approach, local SSF gradients and structural heterogeneities can be discovered to obtain more detail about the sample’s microstructure, thus enhancing the analytic capacity of the nanoindentation technique. We demonstrate the application of the SSF gradient-divergence analysis approach to nanoindentation measurements of bulk silicon.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fischer-Cripps, A. (2004). Nanoindentation. New York: Springer-Verlag.

  • 2. Oyen, M.L., & Cook, R.F. (2009). A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed., 2, 396–407.

  • 3. Guo, Y.B., & Warren, A.W. (2005). Microscale mechanical behavior of the subsurface by finishing processes. J. Manuf. Sci. Eng., 126, 333–338.

  • 4. Warren, A.W., Guo, Y.B., & Weaver, M.L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf. Coat. Tech., 200, 3459–3467.

  • 5. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., & Schmid, C.F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA, 103, 6184–6189.

  • 6. Sangwal, K. (2000). On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys., 63, 145–152.

  • 7. Kanders, U., Kanders, K., Maniks, J., Mitin, V., Kovalenko, V., Nazarovs, P., & Erts, D. (2015). Nanoindentation response analysis of Cu-rich carbon–copper composite films deposited by PVD technique. Surf. Coat. Tech., 280, 308–316.

  • 8. Saha, R., & Nix, W.D. (2002). Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater., 50, 23–38.

  • 9. Manika, I., & Maniks, J. (2008). Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J. Phys. D. Appl. Phys., 41, 074010.

  • 10. Kanders, U., & Kanders, K. (2017). Nanoindentation response analysis of thin film substrates-II: Strain hardening-softening oscillations in subsurface layer. Proc. Latv. Acad. Sci. B, 71.

  • 11. Fleck, N., & Hutchinson, J. (1997). Strain gradient plasticity. Adv. Appl. Mech., 33, 295–362.

  • 12. Gao, H., Huang, Y., & Nix, W.D. (1999). Modeling plasticity at the micrometer scale. Naturwissenschaften, 86, 507–515.

  • 13. Johnson, K.L. (1970). The correlation of indentation experiments. J. Mech. Phys. Solids, 18, 115–126.

  • 14. Johnson, K.L. (1985). Contact Mechanics. Cambridge: Cambridge University Press.

  • 15. Hay, J.L., Agee, P., & Herbert, E.G. (2010). Continuous stiffness measurement during instrumented indentation testing. Exp. Techniques, 34, 86–94.

  • 16. Oliver, W., & Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19, 3–20.

  • 17. Zarudi, I., Zhang, L.C., Cheong, W.C.D., & Yu, T.X. (2005). The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater., 53, 4795–4800.

  • 18. Yan, J., Takahashi, H., Gai, X., Harada, H., Tamaki, J., & Kuriyagawa, T. (2006). Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng. A, 423, 19–23.

  • 19. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., & Embury, J.D. (1998). Structure and mechanical properties of Cu-X (X= Nb, Cr, Ni) nanolayered composites. Scripta Mater., 39, 555–560.

  • 20. Maniks, J., Mitin, V., Kanders, U., Kovalenko, V., Nazarovs, P., Baitimirova, M., Meija, R., Zabels, R., Kundzins, K., & Erts, D. (2015). Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Tech., 276, 279–285.


Journal + Issues