The Study of Adsorption Process of Pb Ions Using Well-Aligned Arrays of ZnO Nanotubes as a Sorbent

M. Krasovska 1 , V. Gerbreders 1 , E. Tamanis 1 , S. Gerbreders 1  and A. Bulanovs 1
  • 1 G.Libert’s Innovative Microscopy Centre, Daugavpils University, 1 Parades Str., Daugavpils, LV-5401, Latvia

Abstract

Well-structured ZnO nanotubes are obtained by a self-selective etching method with lowering temperatures of growth during the hydrothermal process.

The structural and optical properties of the obtained nanostructures are investigated by various conventional methods.

The goal of the research is to compare the efficiency of ZnO nanotubes to that of ZnO nanorods during lead adsorption process from aqueous solution and demonstrate that hollow nanostructures are more effective than solid nanostructures of the same morphology due to their larger effective surface.

Both nanotubes and nanorods are obtained under similar growth conditions: neither growth solution composition, nor concentration is changed. ZnO morphology is switched only by changing temperature during the growth process.

The measurements are carried out to assess the efficiency of the adsorption per unit weight of ZnO nanorod and nanotube capacity of static adsorption.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Amin, M.T., Alazba, A.A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater.Sci. Eng., 1–24.DOI: http://dx.doi.org/10.1155/2014/825910.

  • 2. Singh, S., Barick, K.C., & Bahadur, D. (2013). Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. Nanotechnol, 3(20). DOI 10.5772/57237.

  • 3. Rahman, M.M., Bahadar, K., Hadi, S., & Marwani, M. (2014). Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation, J.Ind. Eng. Chem. 20(3), 1071–1078. DOI: 10.1016/j.jiec.2013.06.044.

  • 4. Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., Ghasemian, M.B. (2013). A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: optimization, equilibrium modeling, and kinetics studies. Int. J. Environ. Sci. Technol., 10, 325–340. DOI: 10.1007/s13762-012-0135-6.

  • 5. Srivastava, S., & Srivastav, Y. (2013). Removal of arsenic from waste water by using ZnO nano-materials. J.Mater. Sci.Eng. B, 3(8), 483–492.

  • 6. Khan, S.B., Rahman, M.M., Marwani, H.M., Asiri A.M., & Alamry, K.A. (2013). An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanosc. Res. Lett. 8, 377. DOI: 10.1186/1556-276X-8-377.

  • 7. Rahman, M.M., Khan, S.B. Asiri, A.M., Marwani, H.M., & Qusti, A.H. (2013). Selective detection of toxic Pb (II) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites, Comp. B, 54, 215–223. DOI:http://dx.doi.org/10.1016/j.compositesb.2013.05.018.

  • 8. Kannadasan, N., Shanmugam, N., Sathishkumar, K., Cholan, S., Ponnguzhali, R., & Viruthagiri, G. (2015). Optical behavior and sensor activity of Pb ions incorporated ZnO nanocrystals. Spectrochim. Acta A: Molecul. Biomolecul. Spectrosc. 143, 179–186. DOI: http://dx.doi.org/10.1016/j.saa.2015.01.113.

  • 9. Erdem, M., Ucar, S. Karagöz, S., & Tay, T. (2013). Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Sci.World. J., 7. DOI: http://dx.doi.org/10.1155/2013/146092.

  • 10. Xianbiao, W., Weiping, C., Shengwen, L., Guozhong, W., Zhikun, W., & Huijun Z. (2013). ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 422, 199–205. DOI:http://dx.doi.org/10.1016/j.colsurfa.2013.01.031.

  • 11. Wang, X., Guo, Y., Yang, L., Han, M., & Zhao, J. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2(7), 154. DOI:10.4172/2161-0525.1000154.

  • 12. Yeong, H.K., Dandu, K.V.R., and Jae, S.Y. (2013). Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications. Nanoscale Research Letters, 8, 262.

  • 13. Krasovska, M., Gerbreders, V., Paskevics, V. Ogurcovs, A., & Mihailova, I. (2015). Obtaining a well-aligned ZnO nanotube array using the hydrothermal growth method. Latvian J. Phys.Techn.Sci. 5(52), 28–40. DOI: 10.1515/lpts-2015-0026.

  • 14. Chae, K., Zhang, Q., Kim, J.S, Jeong, Y., & Cao, G. (2010). Low-temperature solution growth of ZnO nanotube arrays. Beilstein J.Nanotechnol, 1, 128–134. DOI:10.3762/bjnano.1.15.

  • 15. Roza, L., Rahman, M.Y.A., Umar, A.A., & Salleh, M.M. (2015). Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electro-chemical (PEC) solar cell application. J. All.Comp., 618, 153–158. DOI:10.1016/j.jallcom.2014.08.113.

  • 16. Song, Y., Xi, J., Xu S., Yang, R., Gao, Z., Hu, C., & Wang, Z. (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectricnanogenerators. J. Mater. Chem., 19(48), 9260–9264. DOI: 10.1039/B917525C.

  • 17. Hongqiang, W., Guanghai, L., Lichao, J., Guozhong, W., & Chunjuan, T. (2008). Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes. J. Phys. Chem. C, 112(31), 11738–11743. DOI: 10.1021/jp803059k.

  • 18. Yap, Y.K. (2009). Growth mechanisms of vertically-aligned carbon, boron nitride, and zinc oxide nanotubes. AIP Conf. Proc. 1150, 126. DOI: 10.1063/1.3192226.

  • 19. Alfind, A., Frit, P., Deepalakshmi, K., Prithivikumaran, N., & Jeyakumaran, N. (2014). The effect of annealing time on lead oxide thin films coated on indium tin oxide substrate. Int. J. ChemTech Res., 6(13), 5347–5352.

OPEN ACCESS

Journal + Issues

Search