Energy Aspects of Green Buildings – International Experience

Open access

Abstract

At present, reduction of greenhouse gas emissions is one of the main environmental priorities globally, and implementation of sustainability aspects in the construction industry, including energy aspects, is of major importance for long-term environmental development, as buildings have a long life cycle and require many resources both for construction and operation periods. The aim of the research is to analyse energy aspects of green buildings. The results of research show that the construction of green buildings can significantly result in energy savings and has other benefits for different market participants. Future research directions have been identified as well.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Actiņa G. Geipele I. and Zeltiņš N. (2014). Role of building thermal inertia as a selection criterion of edifice renovation strategy and energy plan development in Latvia: Case study. In Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014) / ed. by Wen-Pei Sung Jimmy (C.M.) Kao Taiwan Taiwan 6–7 December 2014. Leiden: CRC Press/Balkema 2014 pp. 361–365. ISBN 978-1-138-02691-9. e-ISBN 978-1-315-73991-5. DOI:10.1201/b18135-73

  • 2. Ahn Y.H. Jung C.W. Suh M. and Jeon M.H. (2016). Integrated construction process for green building. Procedia Engineering 145 670–676. DOI: 10.1016/j.proeng.2016.04.065

  • 3. Ambec S. and Lanoie P. (2008). Does it pay to be green? A systematic overview. Academy of Management Perspectives 22 45–62 as cited in Chen P.-H. Ong C.-F. & Hsu S.-C. (2016). Understanding the relationships between environmental management practices and financial performances of multinational construction firms. Journal of Cleaner Production. 139 750–760. http://dx.doi.org/10.1016/j.jclepro.2016.08.109

  • 4. Azar E. Nikolopoulou C. and Papadopoulos S. (2016). Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modelling. Applied Energy 183 926–937. http://dx.doi.org/10.1016/j.apenergy.2016.09.022

  • 5. Balaban O. and Oliveira J. A. P. (2016). Sustainable buildings for healthier cities: Assessing the co-benefits of green buildings in Japan. Journal of Cleaner Production. Article in Press 1–11. http://dx.doi.org/10.1016/j.jclepro.2016.01.086

  • 6. Calderón C. James Urquizo J. and McLoughlin A. (2015). A GIS domestic building framework to estimate energy end-use demand in UK sub-city areas. Energy and Buildings 96 236–250. http://dx.doi.org/10.1016/j.enbuild.2015.03.029

  • 7. Chan E.H.W. Qian Q.K. and Lam P.T.I. (2009). The market for green building in developed Asian cities – The perspectives of building designers. Energy Policy 37 3061–3070. DOI:10.1016/j.enpol.2009.03.057

  • 8. Christersson M. Vimpari J. and Junnila S. (2015). Assessment of financial potential of real estate energy efficiency investments – A discounted cash flow approach. Sustainable Cities and Society 18 66–73. http://dx.doi.org/10.1016/j.scs.2015.06.002

  • 9. European statistics database Eurostat. Statistics database. Retrieved from http://ec.europa.eu/eurostat/data/database

  • 10. Geipele I. Geipele S. Staube T. Ciemleja G. and Zeltins N. (2016). The development of nanotechnologies and advanced materials industry in science and entrepreneurship: Socioeconomic and technical indicators. A case study of Latvia (Part Two). Latvian Journal of Physics and Technical Sciences 53(5) 31–42. DOI: 10.1515/lpts-2016-0034

  • 11. Ilhan B. and Yaman H. (2016). Green building assessment tool (GBAT) for integrated BIM-based design decisions. Automation in Construction. 70 26–37. http://dx.doi.org/10.1016/j.autcon.2016.05.001

  • 12. Kenisarin M. and Mahkamov K. (2016). Passive thermal control in residential buildings using phase change materials. Renewable and Sustainable Energy Reviews. 55 371–398. http://dx.doi.org/10.1016/j.rser.2015.10.128

  • 13. Khalid F. Dincer I. and Rosen M.A. (2016). Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings. Applied Thermal Engineering 99 1286–1294. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.055

  • 14. Krasowska K. and Olczyk N. (2015). Energieprobleme mit Plattenbauten [Energy Problems in Prefabricated Buildings]. In Schmidt B. Schmidt D. & Venymer H. (Hrsg.) Energieökonomisch Wohnen: 9. Konferenz Solarökologische Bausanierung im SolarZentrum Mecklenburg-Vorpommern. Internationale Konferenz Solarökologische Bausanierung [Energy Economical Living: 9th Conference Solar Ecological Building Restoration in the Solar Center Mecklenburg-Vorpommern] pp. 135–148 2015 Lübow-Wietow. Berlin Wien Zürich: Beuth Ltd.

  • 15. Liua H. and Lin B. (2016). Ecological indicators for green building construction. Ecological Indicators 67 68–77. http://dx.doi.org/10.1016/j.ecolind.2016.02.024

  • 16. Office of the Federal Environmental Executive (2003). The Federal Commitment to Green Building: Experiences and Expectations. As cited in Marble institute. Green building – History of Green buildings. Retrieved from http://www.marble-institute.com/default/assets/File/consumers/historystoneingreenbuilding.pdf

  • 17. Ouyang X. and Lin. B. (2015). Analyzing energy savings potential of the Chinese building materials industry under different economic growth scenarios. Energy and Buildings 109 316–327. http://dx.doi.org/10.1016/j.enbuild.2015.09.068

  • 18. Qin X. Mo Y. and Jing. L. (2016). Risk perceptions of the life-cycle of green buildings in China. Journal of Cleaner Production 126 148–158. http://dx.doi.org/10.1016/j.jclepro.2016.03.103

  • 19. RTU Marketing and Communication Department (2016). RTU radītā unikālā līdzstrāvas elektroapgādes sistēma ļaus ietaupīt līdz 15% elektroenerģijas [Unique DC Power Supply System Created at RTU will save up to 15 % of Electricity]. Retrieved from https://ortus.rtu.lv/f/u101l1s187/p/rtu-jps-arhivs.u101l1n201/max/render.uP?pCm=view&pP_action=article&pP_id=22777#Pluto_151_u101l1n201_9678_container

  • 20. Sakipova S. Jakovics A. Gendelis S. and Buketov E.A. (2016). The potential of renewable energy sources in Latvia. Latvian Journal of Physics and Technical Sciences53(1) 3–13. DOI: 10.1515/lpts-2016-0001.

  • 21. Saulessūknis. Solārās apkures sistēma [Saulessuknis. A solar heating system]. (2015). http://saulessuknis.lv as cited in Sakipova S. Jakovics A. Gendelis S. & Buketov E.A. (2016). The potential of renewable energy sources in Latvia. Latvian Journal of Physics and Technical Sciences53(1) 3–13. DOI: 10.1515/lpts-2016-0001.

  • 22. Shi Q. Yan Y. Zuo J. and Yu T. (2016). Objective conflicts in green buildings projects: A critical analysis. Building and Environment 96 107–117. http://dx.doi.org/10.1016/j.buildenv.2015.11.016

  • 23. Vigants E. (2014). Renewable energy in Latvia. In Conf. Renewable Energy in the Baltics and the Future of European Energy Security Washington DC December 15 2014. Retrieved from https://us.boell.org/sites/default/files/uploads/2015/02/edgars_vigants_laef_prezentation_washington_ev_final.pdf

  • 24. Vyas G.S. and Jha K.N. (2017). Benchmarking green building attributes to achieve cost effectiveness using a data envelopment analysis. Sustainable Cities and Society 28 127–134. http://dx.doi.org/10.1016/j.scs.2016.08.028

  • 25. Wang W. Zmeureanu R. and Rivard H. (2005). Applying multi-objective genetic algorithmsin green building design optimization. Building and Environment 40 1512–1525. DOI:10.1016/j.buildenv.2004.11.017

  • 26. Wing S.N.C. Canha D. and Pretorius J.H.C. (2015). Residential solar water heating - Measurement and verification. Case studies. In 8th International Conference on Energy Efficiency in Domestic Appliances and Lighting. 26–28 August 2015 Lucerne-Horw Switherland. Retrieved from https://iet.jrc.ec.europa.eu/energyefficiency/sites/energyefficiency/files/events/EEDAL15/S15_Heating-cooling-1/eedal15_submission_90.pdf

  • 27. Zhao D. McCoy A. and Du J. (2016). An empirical study on the energy consumption in residential buildings after adopting green building standards. Procedia Engineering 145 766–773. DOI: 10.1016/j.proeng.2016.04.100

Search
Journal information
Impact Factor


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 353 171 7
PDF Downloads 215 124 4