Study of Copper Nitride Thin Film Structure

Open access

Abstract

X-ray diffraction and x-ray absorption spectroscopy at the Cu K-edge were used to study the atomic structure in copper nitride (Cu3N) thin films. Textured nanocrystalline films are obtained upon dc magnetron sputtering on substrates heated at about 190 °C, whereas amorphous films having strongly disordered structure already in the second coordination shell of copper are deposited in the absence of heating.

1. Zachwieja, U., and Jacobs, H. (1990). Ammonothermalsynthese von kupfernitrid, Cu3N. J. Less Common Metals 161, 175–184. DOI: 10.1016/0022-5088(90)90327-G.

2. Paniconi, G., Stoeva, Z., Doberstein, H., Smith, R. I., Gallagher, B. L., and Gregory, D.H. (2007). Structural chemistry of Cu3N powders obtained by ammonolysis reactions. Solid State Sci. 9, 907–913. DOI: 10.1016/j.solidstatesciences.2007.03.017.

3. Asano, M., Umeda, K., and Tasaki, A. (1990). Cu3N thin film for a new light recording media. Jpn. J. Appl. Phys. 29, 1985–1986. DOI: 10.1143/JJAP.29.1985.

4. Maruyama, T., and Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Appl. Phys. Lett. 69, 890–891. DOI: 10.1063/1.117978.

5. Borsa, D.M., Grachev, S., Presura, C., and Boerma, D.O. (2002). Growth and properties of Cu3N films and Cu3N/γ’-Fe4N bilayers. Appl. Phys. Lett. 80, 1823–1825. DOI: 10.1063/1.1459116.

6. Wu, H., and Chen, W. (2011). Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133, 15236–15239. DOI: 10.1021/ja204748u.

7. Maya, L. (1993). Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol. A 11, 604–608. DOI: 10.1116/1.578778.

8. Borsa, D.M., and Boerma, D.O. (2004). Growth, structural and optical properties of Cu3N films. Surf. Sci. 548, 95–105. DOI: 10.1016/j.susc.2003.10.053.

9. Zakutayev, A., Caskey, Ch.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., and Lany, S. (2014). Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125. DOI: 10.1021/jz5001787.

10. Caskey, Ch. M., Richards, R.M., Ginleya, D.S., and Zakutayev, A. (2014). Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430. DOI: 10.1039/c4mh00049h.

11. Pierson, J.F. (2002). Structure and properties of copper nitride films formed by reactive magnetron sputtering. Vacuum 66, 59–64. DOI: 10.1016/S0042-207X(01)00425-0.

12. Maruyama, T., and Morishita, T. (1995). Copper nitride thin films prepared by radio-frequency reactive sputtering. J. Appl. Phys. 78, 4104–4107. DOI: 10.1063/1.359868.

13. Hahn, U., and Weber, W. (1996). Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu(I) compounds. Phys. Rev. B 53, 12684. DOI: 10.1103/PhysRevB.53.12684.

14. Moreno-Armenta, M.G., Martínez-Ruiz, A., and Takeuchi, N. (2004). Ab initio total energy calculations of copper nitride: The effect of lattice parameters and Cu content in the electronic properties. Solid State Sci. 6, 9–14. DOI: 10.1016/j.solidstatesciences.2003.10.014.

15. Hou, Z.F. (2008). Effects of Cu, N, and Li intercalation on the structural stability and electronic structure of cubic Cu3N. Solid State Sci. 10, 1651–1657. DOI: 10.1016/j.solidstatesciences.2008.02.013.

16. Zhao, J.G., Yang, L.X., and Yu, Y., (2006). Pressure-induced metallization and structural evolution of Cu3N. Phys. Stat. Sol. (b) 243, 573–578. DOI: 10.1002/pssb.200541280.

17. Wosylus, A., Schwarz, U., Akselrud, L., Tucker, M.G., Hanfland, M., Rabia, K., Kuntscher, C., von Appen, J., Dronskowski, R., Rau, D., and Niewa, R. (2009). High-pressure phase transition and properties of Cu3N: An experimental and theoretical study. Z. Anorg. Allg. Chem. 635, 1959–1968. DOI: 10.1002/zaac.200900369.

18. Rickers, K., Drube, W., Schulte-Schrepping, H., Welter, E., Brüggmann, U., Herrmann, M., Heuer, J., and Schulz-Ritter, H. (2007). New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB. AIP Conf. Proc. 882, 905–907. DOI: 10.1063/1.2644700

19. Kuzmin, A. (1995). EDA: EXAFS data analysis software package. Physica B 208-209, 175–176. DOI: 10.1016/0921-4526(94)00663-G.

20. Aksenov, V.L., Kuzmin, A. Yu., Purans, J., and Tyutyunnikov, S.I. (2006). Development of Methods of EXAFS Spectroscopy on Synchrotron Radiation Beams: Review. Crystallogr. Rep. 51, 908–935. DOI: 10.1134/S1063774506060022.

21. Kuzmin, A., and Chaboy, J. (2014). EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 1, 571–589. DOI: 10.1107/S2052252514021101.

22. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576. DOI: 10.1103/PhysRevB.58.7565.

23. Rehr, J.J., and Albers, R.C. (2000). Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654. DOI: 10.1103/RevModPhys.72.621.

24. Xiao, J., Li, Y., and Jiang, A. (2011). Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. Technol. 27, 403–407. DOI: 10.1016/S1005-0302(11)60082-0.

25. Yue, G.H., Yana, P.X., and Wang, J. (2005). Study on the preparation and properties of copper nitride thin films. J. Crystal Growth 274, 464–468. DOI: 10.1016/j.jcrysgro.2004.10.032.

26. Kuzmin, A., and Purans, J. (1993). A new fast spherical approximation for calculation of multiple scattering contribution in the X-ray absorption fine structure and its application to ReO3, NaWO3 and MoO3. J. Phys.: Condensed Matter 5, 267–282. DOI: 10.1088/0953-8984/5/3/004.

27. Anspoks, A., Kalinko, A., Kalendarev, R., and Kuzmin, A. (2012). Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies. Phys. Rev. B 86, 174114, 1–11. DOI: 10.1103/PhysRevB.86.174114.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 149 9
PDF Downloads 96 71 9