Numerical 2D And 3D Simulations of a Spherical Fabry–Pérot Resonator for Application as a Reference Cavity for Laser Frequency Stabilisation

E. Nitiss 1 , K. Bluss 2 , and J. Alnis 3
  • 1 University of Latvia, Institute of Solid State Physics 8 Kengaraga Str., Riga, LV-1083, LATVIA
  • 2 Optek Ltd. 64 Rigas Av., Adazi, Adazi district, LV-2164, LATVIA
  • 3 University of Latvia, Institute of Atomic Physics and Spectroscopy 4 Skunu Str., Riga, LV-1586, LATVIA


We report on the results of a numerical study of deformations of a spherical Fabry-Pérot cavity that can be used for laser frequency stabilisation. It is demonstrated that for a precise simulation of the cavity deformations a 3D model has to be used instead of a simpler 2D model, which employs simulation on the symmetry plane of the cavity. To lower the sensitivity to environmental perturbations, it is suggested to use a material with a low density and a high Young’s modulus. We also show that the mechanical resonance frequencies of the cavity are mainly determined by the size of the cavity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Willke, B., Danzmann, K., Frede, M., King, P., Kracht, D., Kwee, P., Puncken, O., Savage, R. L., Schulz, B., Seifert, F., Veltkamp, C., Wagner, S., Weßels, P. and Winkelmann, L. (2008). Stabilized lasers for advanced gravitational wave detectors. Class. Quantum Gravity 25, 114040.

  • 2. Pellegrini, S., Buller, G.S., Smith, J.M., Wallace, A.M., and Cova, S. (2000). Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 11, 712-716.

  • 3. Eisele, C., Nevsky, A., and Schiller, S. (2009). Laboratory test of the isotropy of light propagation at the 10-17 level. Phys. Rev. Lett. 103, 090401.

  • 4. Gill, P. (2005). Optical frequency standards. Metrologia 42, S125-S137.

  • 5. Rafac, R., Young, B., Beall, J., Itano, W., Wineland, D., and Bergquist, J. (2000). Subdekahertz ultraviolet spectroscopy of 199Hg+. Phys. Rev. Lett. 85, 2462-2465.

  • 6. Thorpe, M.J., Rippe, L., Fortier, T.M., Kirchner, M.S., and Rosenband, T. (2011). Frequency stabilization to 6 × 10−16 via spectral-hole burning. Nat. Photonics 5, 688-693.

  • 7. Alnis, J., Matveev, A., Kolachevsky, N., Udem, T., and Hänsch, T.W. (2008). Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow- expansion glass Fabry-Pérot cavities. Phys. Rev. A 77, 053809.

  • 8. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., and Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Photophysics Laser Chem. 31, 97-105.

  • 9. Notcutt, M., Ma, L.S., Ye, J., and Hall, J.L. (2005). Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 30, 1815-1817.

  • 10. Webster, S., Oxborrow, M., and Gill, P. (2007). Vibration insensitive optical cavity. Phys. Rev. A 75, 011801.

  • 11. Alnis, J., Matveev, A., Kolachevsky, N., Wilken, T., Holzwarth, R., and Hänsch, T.W. (2008). Stable diode lasers for hydrogen precision spectroscopy. Eur. Phys. J. Spec. Top. 163, 89-94.

  • 12. Millo, J., Magalhães, D., Mandache, C., Le Coq, Y., English, E., Westergaard, P., Lodewyck, J., Bize, S., Lemonde, P., and Santarelli, G. (2009). Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 79, 053829.

  • 13. Jin, M., Yan-Yi, J., Su, F., Zhi-Yi, B., and Long-Sheng, M. (2009) Vibration insensitive optical ring cavity. Chinese Phys. B 18, 2334-2339.

  • 14. Leibrandt, D.R., Thorpe, M.J., Notcutt, M., Drullinger, R.E., Rosenband, T., and Bergquist, J.C. (2011). Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express 19, 3471-82.

  • 15. Webster, S., and Gill, P. (2011). Force-insensitive optical cavity. Opt. Lett. 36, 3572-4.

  • 16. Alnis, J., Schliesser, A., Wang, C.Y., Hofer, J., Kippenberg, T.J., and Hänsch, T.W. (2011). Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804.

  • 17. Numata, K., Kemery, A., and Camp, J. (2004). Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602.

  • 18. Leibrandt, D.R., Thorpe, M.J., Bergquist, J.C., and Rosenband, T. (2011). Field-test of a robust, portable, frequency-stable laser. Opt. Express 19, 10278-10286.

  • 19. Vogt, S., Lisdat, C., Legero ,T., Sterr, U., Ernsting, I., Nevsky, A., and Schiller, S. (2011). Demonstration of a transportable 1 Hz-linewidth laser. Appl. Phys. B 104, 741-745. 33

  • 20. Chen, L., Hall, J., Ye, J., Yang, T., Zang, E., and Li, T. (2006). Vibration-induced elastic deformation of Fabry-Perot cavities. Phys. Rev. A 74, 053801.

  • 21. Nazarova, T., Riehle, F., and Sterr, U. (2006).Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser. Appl. Phys. B 83, 531-536.

  • 22. Hall, J., Taubman, M., and Ye, J. (2001). Laser stabilization. In Handbook of Optics, M. Bass, ed., 2nd ed. McGRAW-HILL, p. 814.

  • 23. Davis, M.J., Hayden, J.S., and Farber, D.L. (2007). High-precision thermal expansion measurements using small Fabry-Perot etalons. In Proceedings of SPIE - The International Society for Optical Engineering, R. J. Jones, ed. , Vol. 6673, p. 66730R-66730R-12.

  • 24. Numata, K., Bianc, G.B., Ohishi, N., Sekiya, A., Otsuka, S., Kawabe, K., Ando, M., and Tsubono, K. (2000). Measurement of the intrinsic mechanical loss of low-loss samples using a nodal support. Phys. Lett. A 276, 37-46.

  • 25. Richard, J.-P., and Hamilton, J.J. (1991). Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency. Rev. Sci. Instrum. 62, 2375.

  • 26. Kessler, T., Hagemann, C., Grebing, C., Legero, T., Sterr, U., Riehle, F., Martin, M.J., Chen, L., and Ye, J. (2012). A sub-40-mHz-linewidth laser based on a silicon singlecrystal optical cavity. Nat. Photonics 6, 687-692.

  • 27. Tao, R., Hinchet, R., Ardila, G., and Mouis, M. (2013). Evaluation of vertical integrated nanogenerator performances in flexion. J. Phys. Conf. Ser. 476, 012006.

  • 28. Liang, Z., and Hua-Min, Q. (2014). Mechanical research and development of monocrystalline silicon neutron beam window for CSNS. Chinese Physics C, 5.

  • 29. Nevsky, A.Y., Eichenseer, M., von Zanthier, J., and Walther, H. (2002). A Nd:YAG Laser with short-term frequency stability at the Hertz-level. Opt. Commun. 210, 91-100.


Journal + Issues