Broadband Fabry–Pérot Resonator From Zerodur for Laser Stabilisation Below 1KHZ Linewidth With < 100 HZ/S Drift and Reduced Sensitivity to Vibrations

Open access

Abstract

Here we demonstrate the results of creating a two-mirror Fabry-Pérot resonator (FPR) that allows achieving the spectral width of a stabilised laser line below 1 kHz. It had low expansion Zerodur spacer and broadband high reflectance mirrors (99.85% in the range of 630 to 1140 nm). FPR was vertically mid-plane mounted for reduced sensitivity to vibrations and included in two shields inside a vacuum chamber to lower temperature fluctuations. Peltier element was used for temperature stabilisation at zero-expansion temperature. Pound-Drever-Hall (PDH) technique was applied. The signal from FPR was compared to ultra-stable signal (of about 1 Hz linewidth) to form a beat note signal. For the best performance, width of the beat note signal was below 1 kHz with the linear drift of about 23 Hz/s at 780 nm. The Allan deviation showed relative stability of the signal to be about 1 × 10-12.

1. Demtröder, W. (2008). Laser Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-73418-5

2. Webster, S., Oxborrow, M., & Gill, P. (2007). Vibration insensitive optical cavity. Physical Review A, 75(1), 011801. doi:10.1103/PhysRevA.75.011801

3. Matveev, A. N., Kolachevsky, N. N., Alnis, J., & Hänsch, T. W. (2008). Semiconductor laser with the subhertz linewidth. Quantum Electronics, 38(10), 895-902. doi:10.1070/ QE2008v038n10ABEH013806

4. Leibrandt, D. R., Thorpe, M. J., Notcutt, M., Drullinger, R. E., Rosenband, T., & Bergquist, J. C. (2011). Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Optics Express, 19(4), 3471-82. doi:10.1364/ OE.19.003471

5. Webster, S., & Gill, P. (2011). Force-insensitive optical cavity. Optics Letters, 36(18), 3572-4. doi:10.1364/OL.36.003572 19

6. Alnis, J., Matveev, A., Kolachevsky, N., Udem, T., & Hänsch, T. W. (2008). Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralowexpansion glass Fabry-Pérot cavities. Physical Review A, 77(5), 053809. doi:10.1103/ PhysRevA.77.053809

7. Numata, K., Kemery, A., & Camp, J. (2004). Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities. Physical Review Letters, 93(25), 250602. doi:10.1103/PhysRevLett.93.250602

8. Kessler, T., Legero, T., & Sterr, U. (2011). Thermal noise in optical cavities revisited. Journal of the Optical Society of America B, 29(1), 178. doi:10.1364/JOSAB.29.000178

9. Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley, A. J., & Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Applied Physics B Photophysics and Laser Chemistry, 31(2), 97-105. doi:10.1007/ BF00702605

10. Black, E. D. (2001). An introduction to Pound-Drever-Hall laser frequency stabilization. American Journal of Physics, 69(1), 79. doi:10.1119/1.1286663

11. Bloom, B. J., Nicholson, T. L., Williams, J. R., Campbell, S. L., Bishof, M., Zhang, X., Zhang, W., Bromley, S.L, Ye, J. (2014). An optical lattice clock with accuracy and stability at the 10(-18) level. Nature, 506(7486), 71-5. doi:10.1038/nature12941

12. Yu, Y., Mitryk, S., & Mueller, G. (2014). Arm locking for space-based laser interferometry gravitational wave observatories. Physical Review D, 90(6), 062005. doi:10.1103/ PhysRevD.90.062005

13. Batteiger, V., Knünz, S., Herrmann, M., Saathoff, G., Schüssler, H., Bernhardt, B., Wilken, T., Holzwarth, R., Hänsch, T.W., Udem, T. (2009). Precision spectroscopy of the 3s-3p fine-structure doublet in Mg+. Physical Review A, 80(2), 022503. doi:10.1103/ PhysRevA.80.022503

14. Fescenko, I., Alnis, J., Schliesser, A., Wang, C. Y., Kippenberg, T. J., & Hänsch, T. W. (2012). Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Optics Express, 20(17), 19185-93.

15. Sesko, D., Fan, C. G., & Wieman, C. E. (1988). Production of a cold atomic vapor using diode-laser cooling. Journal of the Optical Society of America B.

16. Oxley, P., & Collins, P. (2010). Frequency stabilization of multiple lasers and Rydberg atom spectroscopy. Applied Physics B, 101(1-2), 23-31. doi:10.1007/s00340-010-4154-z

17. Dinesan, H., Fasci, E., Castrillo, A., & Gianfrani, L. (2014). Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Optics Letters, 39(7), 2198-201. doi:10.1364/ OL.39.00219

18. Cundiff, S. T., & Ye, J. (2005). Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston: Springer. doi:10.1007/b102450

19. Wieman, C. E., & Hollberg, L. (1991). Using diode lasers for atomic physics. Review of Scientific Instruments, 62(1), 1-20. doi:10.1063/1.1142305

20. Izumi, K., Sigg, D., & Barsotti, L. (2014). Self-amplified lock of an ultra-narrow linewidth optical cavity. Optics Letters, 39(18), 5285. doi:10.1364/OL.39.005285

21. Zhu, M., Wei, H., Wu, X., & Li, Y. (2015). Fabry-Pérot interferometer with picometer resolution referenced to an optical frequency comb. Optics and Lasers in Engineering, 67, 128-134. doi:10.1016/j.optlaseng.2014.11.010

22. Riehle, F. (2003). Frequency Standards. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527605991

23. Allan, D. W. (1966). Statistics of atomic frequency standards. Proc. IEEE, 54, 221-230. 20

24. Rutman, J. (1978). Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress. Proceedings of the IEEE, 66(9), 1048-1075. doi:10.1109/PROC.1978.11080

25. Melikov, A. K., Krüger, U., Zhou, G., Madsen, T. L., & Langkilde, G. (1997). Air temperature fluctuations in rooms. Building and Environment, 32(2), 101-114.

26. Private communication of J.A. with hydrogen maser CH1-75A manufacturer Quartzlock.

27. Sterr, U., Legero, T., Kessler, T., Schnatz, H., Grosche, G., Terra, O., & Riehle, F. (2009). Ultrastable lasers - new developments and applications. Proc. of SPIE, 7431, 74310A-14. doi:10.1117/12.825217

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 152 13
PDF Downloads 87 60 6