Influence of Light Intensity and Temperature on Cultivation of Microalgae Desmodesmus Communis in Flasks and Laboratory-Scale Stirred Tank Photobioreactor

Open access


Optimization of the microalgae cultivation process and of the bioprocess in general traditionally starts with cultivation experiments in flasks. Then the scale-up follows, when the process from flasks is transferred into a laboratory-scale bioreactor, in which further experiments are performed before developing the process in a pilot-scale reactor. This research was done in order to scale-up the process from a 0.4 1 shake flask to a 4.0 1 laboratory-scale stirred-tank photobioreactor for the cultivation of Desmodesmus (D.) communis microalgae. First, the effect of variation in temperature (21-29 ºC) and in light intensity (200-600 μmol m-2s-1) was studied in the shake-flask experiments. It was shown that the best results (the maximum biomass concentration of 2.72 g 1-1 with a specific growth rate of 0.65 g g-1d-1) can be achieved at the cultivation temperature and light intensity being 25 °C and 300 μmol m2s-1, respectively. At the same time, D. communis cultivation under the same conditions in stirred-tank photobioreactor resulted in average volumetric productivities of biomass due to the light limitation even when the light intensity was increased during the experiment (the maximum biomass productivity 0.25 g 1-1d-1; the maximum biomass concentration 1.78 g 1-1).

1. Rosenberg, J. N., Oyler, G. A., Wilkinson, L., & Betenbaugh, M. J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. 19 (5), 430-436.

2. Mata, T.M., Martins, A.A., & Caetano, N.S. (2010) Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 1 (14), 217-232.

3. Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W., & Flynn, K.J. (2010). Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the Royal Society Interface, 7, 703 -726.

4. Yu, W. L., Ansari, W., Schoepp, N. G., Hannon, M. J., Mayfield, S. P., & Burkart, M. D. (2011). Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb. Cell Fact., 10, 91.

5. Subramanian, S., Barry, A. N., Pieris, S., & Sayre, R. T. (2013). Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnology for biofuels, 6 (1), 150.

6. Oosterhuis, N.M.G. (1984). Scale-up of Bioreactors: A Scale-down Approach. Ph.D. Thesis Delft University of Technology, Huisdrukkerij Suiker Unie.

7. Sherif, S. A., Goswami, D. Y., Stefanakos, E. L., & Steinfeld, A. (2014). Handbook of Hydrogen Energy. Boca Raton, FL, USA: CRC Press.

8. Scott, S.A., Davey, M.P., Dennis, J.S. Horst, I., Howe, C.J., & Lea-Smith, D.J. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 3 (21), 277-286.

9. Kroumov, A., Gacheva, G., Iliev, I., Alexandrov, S., Pilarski, P., & Petkov, G. (2013). Analysis of Sf/V ratio of photobioreactors linked with algal physiology. Genetics and Plant Physiology, 3 (1-2), 55-64.

10. Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnology advances, 27 (2), 153-176.

11. Takors, R. (2012). Scale-up of microbial processes: impacts, tools and open questions. Journal of Biotechnology, 160 (1), 3-9.

12. Trujillo-Roldán, M. A., Valdez-Cruz, N. A., Gonzalez-Monterrubio, C. F., Acevedo- Sánchez, E. V., Martínez-Salinas, C., García-Cabrera, R. I., Gamboa-Suasnavart, R. A., Marín-Palacio, L. D., Villegas J., & Blancas-Cabrera, A. (2013). Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Applied Microbiology and Biotechnology, 97 (22), 9665-9674.

13. Rocha-Valadez, J. A., Estrada, M., Galindo, E., & Serrano-Carreón, L. (2006). From shake flasks to stirred fermentors: Scale-up of an extractive fermentation process for 6-pentyl-α-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochemistry, 41 (6), 1347-1352.

14. Sumino, Y., Sonoi, K., & Doi, M. (1993). Scale-up of purine nucleoside fermentation from a shaking flask to a stirred-tank fermentor. Applied microbiology and biotechnology, 38 (5), 581-585.

15. Pan, Z. W., Wang, H. Q., & Zhong, J. J. (2000). Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme and Microbial Technology, 27 (9), 714-723.

16. Grima, E. M., Fernández, F. A., Camacho, F. G., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. Journal of biotechnology, 70 (1), 231-247.

17. Ogbonna, J. C., Soejima, T., & Tanaka, H. (1998). Development of efficient large-scale photobioreactors. In: Zaborsky OR (ed.), BioHydrogen. Plenum Press, New York & London, pp. 329-343.

18. Ugwu, C.U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 10 (99), 4021-4028.

19. Kunjapur, A.M., & Eldridge, R.B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial & Engineering Chemistry Research, 8 (49), 3516-3526.

20. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances, 3(25), 294-306.

21. Vanags, J., Kunga, L., Dubencovs, K., Galvanauskas, V., Balode, M., & Grīgs, O. (2015). The effect of shaking, CO2 concentration and light intensity on biomass growth of green microalgae Desmodesmus communis. Environmental Research, Engineering and Management. 70 (4), 73-79.

22. Tredici, M. R., & Materassi, R. (1992). From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. Journal of Applied Phycology. 4 (3), 221-231.

23. Siver, P. A. (1983). A new thermal gradient device for culturing algae. British Phycological Journal. 18 (2), 159-164.

24. Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource technology, 129, 7-11.

25. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies, 6 (9), 4607-4638.

26. Dragoş, N., Bercea, V., Bica, A., Drugă, B., Nicoară, A., & Coman, C. (2010). Astaxanthin production from a new strain of Haematococcus pluvialis grown in batch culture. Annals of the Romanian society for cell biology, 15 (2), 353-361.

27. Xiao, R., Chen, R., Zhang, H. Y., & Li, H. (2011). Microalgae Scenedesmus quadricauda grown in digested wastewater for simultaneous CO2 fixation and nutrient removal. Journal of Biobased Materials and Bioenergy, 5 (2), 234-240.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 306 23
PDF Downloads 197 151 5