Optical Microstructures Fabricated with Direct Laser Writing Technique

Open access

Abstract

Three-dimensional photolitography, also known as Direct Laser Writing (DLW), is a powerful technique for fabrication of photonic microstructures. In this paper we present the basics of the relevant technology and discuss some features of the fabrication process. We also describe the experimental setup designed for making colour filters based on diffraction gratings, fibre-tip-integrated lens and anti-reflective coating designed for telecom wavelength (1550 nm). The results obtained demonstrate the DLW technique to be a promising fast prototyping fabrication method that may allow manipulating the properties of optical materials.

1. Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059-2062. DOI: 10.1103/PhysRevLett.58.2059.

2. Joannopoulos, J.D. (2011). Photonic Crystals: Molding the Fow of Light. Princeton University Press.

3. Hadobas, K., Kirsch, S., Carl, A., Acet, M., & Wassermann, E.F. (2000). Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology, 11, 161-164. DOI: 10.1088/0957-4484/11/3/304.

4. Reboud, V., Kehoe, T., Vivas, J.R., Kehagias, N., Zelsmann, M., Alsina, F., & Sotomayor Torres, C.M. (2012). Polymer photonic band-gaps fabricated by nanoimprint lithography. Phot. Nano. Fund. Appl., 10, 632-635. DOI: 10.1016/j.photonics.2012.06.001.

5. Rosolen, G. & Cola, A. (6-8 Dec., 2006). Fabrication of Photonic Crystal Structures by Electron Beam Lithography. Conf. on Optoelectronic and Microelectronic Materials and Devices, 66-69. DOI: 10.1109/COMMAD.2006.4429881

6. Maruo, S., Nakamura, O., & Kawata, S. (1997). Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22, 132-134. DOI: 10.1364/OL.22.000132

7. Kim, K., Park, S., Lee, J., Manohara, H., Desta, Y., Murphy, M., & Ahn, C. H., (2002). Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsyst. Technol., 9 (1-2), 5–10 (2002).

8. Rill, M. S. (2010). Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques. PhD dissertation, Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614

9. Zeng, H., Martella, D., Wasylczyk, P., Cerretti, G., Lavocat, J-C.G., Ho C-H, Parmeggiani, C., & Wiersma, D. (2014). High-Resolution 3D Direct Laser Writing for Liquid-Crystalline Elastomer Microstructures. Advanced materials, 26, 2319-22.

10. Williams, H.E., Freppon, D.J., Kuebler, S.M., Rumpf, R.C., & Melino, M.A. (2011). Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express, 19, 22910-22922. DOI: 10.1364/OE.19.022910.

11. Kowalczyk, M., Haberko, J., & Wasylczyk, P. (2014). Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing. Opt. Express, 22, 12545-12550. DOI: 10.1364/OE.22.012545.

12. Cohen, L.G., & Schneider, L.V. (1974). Microlenses for coupling junction lasers to optical fibers. Appl. Opt., 13(1), 89-94. DOI: 10.1364/AO.13.000089.

13. Bear, P.D. (1981) Microlenses for coupling single-mode fibers to single-mode thin-film waveguides. Proc. SPIE, 0239. DOI: 10.1117/12.959193.

14. Lee, K.S., & Barnes, F.S. (1985). Microlenses on the end of single-mode optical fibers for laser applications. Appl. Opt., 24, 3134-3139. DOI: 10.1364/AO.24.003134.

15. Hadobas, K., Kirsch, S., Carl, A., Acet, M., & Wassermann, E.F. (2000) Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology, 11, 161-164. DOI: 10.1088/0957-4484/11/3/304.

16. Guo, R., Xiao, S., Zhai, X., Li, J., Xia, A., & Huang, W. (2006). Microlens fabrication by means of femtosecond two photon photopolymerization. Opt. Express, 14, 810-816. DOI: 10.1364/OPEX.14.000810 (metoda rysowania)

17. Žukauskas, A., Malinauskas, M., Reinhardt, C., Chichkov, B.N., & Gadonas, R. (2012). Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization. Appl. Opt., 51, 4995-5003. DOI: 10.1364/AO.51.004995.

18. Schallenberg, U.B. (2011). Nanostructures versus thin films in the design of antireflection coatings. Proc. SPIE, 8168-59. DOI:10.1117/12.896841.

19. Schulz, U. (2006). Review of modern techniques to generate antireflective properties on thermoplastic polymers. Appl. Opt., 45, 1608-1618. DOI: 10.1364/AO.45.001608.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.226
Source Normalized Impact per Paper (SNIP) 2017: 0.653

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 140 18
PDF Downloads 54 54 12