Spontaneuos and Parametric Processes in Warm Rubidium Vapours

Open access

Abstract

Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

1. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4(10), 686-689. DOI:10.1038/nphoton.2010.214

2. http://www.idquantique.com/. QUANTIS: physical random number generator.

3. Johnson, M. W. et al. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194-198. DOI:10.1038/nature10012

4. Hammerer, K. (2010). Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82(2), 1041-1093. DOI:10.1103/RevModPhys.82.1041

5. Chalupczak, W., Godun, R. M., Pustelny, S., & Gawlik, W. (2012). Room temperature femtotesla radio-frequency atomic magnetometer. Applied Physics Letters, 100(24), 242401. DOI:10.1063/1.4729016

6. Hammerer, K., Polzik, E., & Cirac, J. (2005). Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Physical Review A, 72(5), 052313. DOI:10.1103/PhysRevA.72.052313

7. Boyer, V., Marino, A. M., Pooser, R. C., & Lett, P. D. (2008). Entangled images from four-wave mixing. Science (N.Y.), 321(5888), 544–547. DOI:10.1126/science.1158275

8. Kozhekin, A., Molmer, K., & Polzik, E. S. (2000). Quantum memory for light. Physical Review A, 62(3), 1473. DOI:10.1103/PhysRevA.62.033809

9. Porras, D., & Cirac, J. I. (2008). Collective generation of quantum states of light by entangled atoms. Physical Review A, 78(5), 1-14. DOI:10.1103/PhysRevA.78.053816

10. Parniak, M., & Wasilewski, W. (2014). Direct observation of atomic diffusion in warm rubidium ensembles. Applied Physics B, 116(2), 415-421. DOI:10.1007/s00340-013-5712-y

11. Chrapkiewicz, R., Wasilewski, W., & Radzewicz, C. (2014). How to measure diffusional decoherence in multimode rubidium vapor memories? Optics Communications, 317, 1-6. DOI:10.1016/j.optcom.2013.12.020

12. Acosta, V. M., Jarmola, A., Windes, D., Corsini, E., Ledbetter, M. P., Karaulanov, T., Auzinsh, M., Rangwala, S. A., Kimball, D. F. J., & Budker, D. (2010). Rubidium dimers in paraffin-coated cells. New Journal of Physics, 12(8), 83054. DOI:10.1088/1367-2630/12/8/083054

13. Chrapkiewicz, R., & Wasilewski, W. (2012). Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapours. Optics Express, 20(28), 29540–29551. DOI:10.1364/OE.20.029540

14. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J., & Polzik, E. S. (2004). Experimental demonstration of quantum memory for light. Nature, 432(7016), 482-486. DOI:10.1038/nature03064

15. Krauter, H., Muschik, Ch. A., Jensen, K., Wasilewski, W., Petersen, J. M., Cirac, & J. I., Polzik, E. S. (2011). Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 107(8), 080503. DOI:10.1103/PhysRevLett.107.080503

16. Shuker, M., Firstenberg, O., Pugatch, R., Ron, A., & Davidson, N. (2008). Storing images in warm atomic vapor. Physical Review Letters, 100(22). DOI:10.1103/PhysRevLett.100.223601

17. Hosseini, M., Sparkes, B. M., Hétet, G., Longdell, J. J., Lam, P. K., & Buchler, B. C. (2009). Coherent optical pulse sequencer for quantum applications. Nature, 461(7261), 241-245. DOI:10.1038/nature08325

18. Matsko, A. B. et al. (2001). Slow, ultraslow, stored, and frozen light. Advances in atomic, molecular, and optical physics, 46, 191-242. DOI:10.1016/S1049-250X(01)80064-1

19. Fleischhauer, M. (2005). Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics, 46(2), 633-673. DOI:10.1103/RevModPhys.77.633

20. Chrapkiewicz, R., & Wasilewski, W. (2010). Multimode spontaneous parametric down-conversion in a lossy medium. Journal of Modern Optics, 57(5), 345-355. DOI:10.1080/09500341003642588

21. Duan, L. M, Lukin, M. D., Cirac, J. I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 81(6862), 5788-418. DOI:10.1038/35106500

22. Scully, M. O., & Zubairy, M. S. (1997). Quantum Optics. Cambridge (UK): Cambridge University Press.

23. Raymer, M. G. (2004). Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering. Journal of Modern Optics, 51(12), 1739-1759, DOI:10.1080/09500340408232488

24. Steck, D. A. (2009). Rubidium 87 D Line Data. http://steck.us/alkalidata/

25. Amuneal. Magnetic Shielding. Theory and Design. http://www.amuneal.com/.

26. Corwin, K. L., Lu, Z. T., Hand, C. F., Epstein, R. J., & Wieman, C. E. (1998). Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Applied Optics, 37(15), 3295–3298. DOI:10.1364/AO.37.003295

27. Happer, W., Jau, Y.-Y., & Walker, T. (2010). Optically Pumped Atoms. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KgaA.

28. Goldberg, E. A. (1981). Degaussing arrangement for maser surrounded by magnetic shielding. RCA Corporation. U.S. Patent no. 4286304. New York.

29. Zibrov, A., Lukin, M., Hollberg, L., & Scully, M. (2002). Efficient frequency up-conversion in resonant coherent media. Physical Review A, 65(5), 051801. DOI:10.1103/PhysRevA.65.051801

30. Sell, J. F., Gearba, M. A., DePaola, B. D., & Knize, R. J. (2014). Collimated blue and infrared beams generated by two-photon excitation in Rb vapor. Optics Letters, 39(3), 528. DOI:10.1364/OL.39.000528

31. Vernier, A., Franke-Arnold, S., Riis, E., & Arnold, A. S. (2010). Enhanced frequency up-conversion in Rb vapor. Optics Express, 18(16), 17020–6. DOI:10.1364/OE.18.017020

32. Willis, R., Becerra, F., Orozco, L., & Rolston, S. (2009). Four-wave mixing in the diamond configuration in an atomic vapor. Physical Review A, 79(3), 033814. DOI:10.1103/PhysRevA.79.033814

33. Srivathsan, B., Gulati, G. K., Chng, B., Maslennikov, G., Matsukevich, D., & Kurtsiefer, C. (2013). Narrow-band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Physical Review Letters, 111(12), 123602. DOI:10.1103/PhysRevLett.111.123602

34. Walker, G. et al. (2012). Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Physical Review Letters, 108(24), 243601. DOI:10.1103/PhysRevLett.108.243601.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.226
Source Normalized Impact per Paper (SNIP) 2017: 0.653

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 5
PDF Downloads 36 36 3